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Titre : Classification de données massives de télédétection

Mots clés : apprentissage profond, télédétection, segmentation sémantique, cartographie, réseaux de
neurones

Résumé : L’observation de la Terre permet
de modéliser et de comprendre son évolu-
tion. L’abondance d’images de télédétection aéri-
ennes et satellitaires nécessite la mise en œu-
vre de moyens d’analyse automatiques, capables
d’interpréter ces données et de cartographier la
surface du globe. Cette thèse traite de la con-
ception, du déploiement et de la validation de
stratégies d’apprentissage automatique, en par-
ticulier de réseaux de neurones convolutifs pro-
fonds, pour la compréhension d’images et la car-
tographie automatisée. Nous proposons des mod-
èles pour l’interprétation d’images couleur, multi-
spectrales et hyperspectrales, capables de pren-
dre en compte les interactions spatiales entre en-

tités géométriques et produisant des cartes d’une
précision permettant la détection d’objets. Nous
introduisons des architectures de fusion de don-
nées par apprentissage multi-modal et correction
résiduelle afin de tirer parti des données ancil-
laires, comme les modèles numériques de terrain
et les connaissances géographiques disponibles
a priori. Enfin, nous étudions les capacités de
généralisation de ces modèles dans des cas ex-
trêmes de jeux de données limités ou massifs.
Nous validons tout au long de cette thèse nos con-
tributions sur de multiples jeux de données aériens
et satellitaires pour la classification des sols et de
leurs usages, l’extraction de bâtiments et la détec-
tion de véhicules.

Title: Classification of big remote sensing data

Keywords: deep learning, remote sensing, semantic segmentation, neural networks, mapping

Summary: Earth Observation allows us to mod-
elize and understand the evolution of our planet.
The profusion of aerial and satellite remote sens-
ing images induces the need for automated tools
able to semantize such raw data in order to map
the Earth. This thesis studies the design, im-
plementation and validation of machine learning
strategies, specifically deep convolutional neural
networks, for image understanding and automatic
mapping. We introduce models for automated in-
terpretation of color, multispectral and hyperspec-
tral images, that are able to exploit spatial rela-
tionships between geometrical entities and to pro-

duce high precision maps relevant for object de-
tection. We design data fusion architectures using
multi-modal learning and residual correction that
can leverage ancillary data, such as digital sur-
face models and prior geographical knowledge. Fi-
nally, we study the generalization abilities of those
networks for extreme cases of both limited and
very large datasets. All along this work, we thor-
oughly validate our contributions on various aerial
and satellite datasets for land cover and land use
classification, building footprints extraction and ve-
hicle detection.
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1.1. Context

1.1 Context

Figure 1.1: Earth Observation satellites from the A-Train constellation in 2018..
Credits: NASA JPL (public domain)

The scientific method is rooted in observation. The understanding of any object comes
from a careful examination and Earth does not escape this fact. It is then not a surprise that,
since the beginnings of the space race, the first satellite orbiting Earth were turned upon the
Earth. Height allowed scientists to gain an entirely new perspective on our planet.

Aerial and satellite imaging is now ubiquitous in modern science. Understanding Earth
is a major scientific challenge for which accurate observation is essentiel before any mod-
elization attemp. Meterology, oceanography, ecology and geography all rely on the rich
information conveyed by remote sensing data.

For these reasons, it is unsurprising that global-scale Earth imaging efforts intensi-
fied these last few years. Satellite constellations such as Landsat, SPOT (Satellites Pour
l’Observation de la Terre), Sentinel or the A-Train ( Fig. 1.1) fly over the planet 24/7. By them-
selves, Sentinel-2A and 2B acquire more than6Tbof data everyday and cover the entire globe
in one week. However, leveraging this big data is far from easy. Image interpretation and
scene understanding from remote sensing data more than often require both sensor-related
and application-specific expert knowledge.

Yet, many fields would benefit from an automated Earth Observation data mining:

• Ecology: forest health monitoring, icecap melt tracking, early detection of oil leaks. . .

• Meteorology: weather forecast, disaster prevention (storms, typhoons), climate warm-
ing study. . .

• Urban planning: monitoring of urban and transport network expansions, emergency
services organization after an earthquake. . .

• Law enforcement: ensure application of agricultural cycles, survey undeclared build-
ings, detect contraband ships and unauthorized fishing. . .
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Despite efforts from French institutions such as Institut national de l’information géo-
graphique et forestière (IGN) and Centre national d’études spatiales (CNES), human photointer-
prets alone cannot process all this data and automation appears to be a seducing alternative.
Delegating to machines the task of interpreting Earth Observation images would allow the
community to multiply observations to generate knowledge and models. To do so, it is help-
ful to build on existing tools for artificial perception and image understanding. The current
state of the art in computer vision mostly depends on deep artificial neural networks, which
significantly overperform traditional approaches in image classification, object detection
and segmentation. An ideal iterative mapping strategy based on Earth Observation data is
illustrated by Fig. 1.2.

This thesis is structured as follow. We aim to design, implement and validate deep neural
networks for automated interpreation of aerial and satellite images. The considered remote
sensing data can be produced by multiple sensors on various scenes for several applications.

acquire  feed

  

 update

mapcontrol

Figure 1.2: Automated iterative cartography based on Earth Observation data.

1.2 Field

This thesis stands at the meeting point of three subfields: remote sensing, computer vision
and machine learning. Image interpretation through computer vision has produced a vast
literature, even when restricted to aerial and satellite images. Recently, deep learning
methods generated significant progress in image understanding. Nonetheless, most of
this progress was focused on perception tasks from the everyday life., such as extracting
knowledge from images and videos, either indoor or outdoor for smart homes, robotics,
multimedia and autonomous driving. Although remote sensing data interpretation benefits
from these works, it also has its own specificities both due to geometry, sensor and point-of-
view.

1.2.1 Remote sensing data

Remote sensing data encompass a large variety of data acquired either by aircrafts or space-
crafts. Ideal observations are performed at nadir, i.e. perpendicular to the ground. In practice
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the embarked sensor is never perfectly oriented, especially in satellites. A geometrical or-
thorectification step is often necessary to correct errors generated by sensor inclination,
terrain relief and parallax.

In all cases, sensors measure the radiative energy emitted by the scene. Active sensors,
such as radar or lidar, are their own signal source; they send an electromagnetic wave and
capture its reflection. On the contrary, passive sensors measure either the radiative energy
emitted by the scene itself (thermal sensors in the infrared) or the solar light it reflects
(multispectral sensors). Those require an external light source.

Remote sensing sensors exist in many configurations and deal with much more physical
phenomenon than consumer-grade cameras. Despite sensors peculiarities, the remote sensing
image processing pipeline does not stem far from the one usually applied in multimedia.
The task is the same in both cases: extracting information from images, i.e. computer vision.
A community exists at the frontier between remote sensing and artificial vision that design
algorithms for Earth Observation image processing.

1.2.2 Machine learning

Converting raw Earth Observation images into data requires automation. The sheer volume
of data acquired every year by aerial and satellite sensors prevents human experts from
processing it in real time.

Machine learning makes it possible to delegate knowledge extraction to the computer
in order to automate it. In most cases, the task at hand is either estimating the value of a
parameter (regression) or take a decision in a set of possibilities (classification).

In remote sensing image interpretation, human experts inspect the data to generate
semantic maps, i.e. they choose for each area or object the category to which it belongs. In
this context, we want to leverage machine learning to model this classification process in
order to automate it.

This modelization relies on a training (or learning) phase during which the model builds
its knowledge base using examples. When the learning is done, the statistical model can be
applied on unseen data to generalize on new observations. The accuracy of this generalization
is the critical point of the machine learning workflow. Two obstacles can trouble the model’s
generalization ability. First, if the model contains too many parameters compared to the
number of training samples, then its knowledge will be purely a memorization of the
examples: this is called overfitting. Second, if the model learns on many samples but with
too few parameters, it will not be able to approximate the decision boundary: this is called
underfitting. Finding the right number of parameters based on the training samples to obtain
the best model is a challenge in itself.

The rise of deep learning since 2000 has largely renewed the statistical learning literature.
Deep neural networks in particular, although designed and first implemented in the 60s,
were perfectly in sync with the big data era. As large annotated datasets appeared, efficient
parallel implementations of large neural networks allowed the state of the art in artificial
perception to jump forward. Data and computing power made deep networks a reality, while
training those same models on big data was simply out of reach for computers 50 years ago.
Since 2012 and their success in the ImageNet challenge, deep convolutional neural networks
have been established as the de facto current state of the art in image processing and gradually
took over most artificial perception tasks.

1.2.3 Computer vision

Computer vision regroups all techniques designed for automated image interpreation. Since
the 60s, artificial intelligence experts worked on emulating human sensorial abilities, starting
with the most common of them: sight. As digital cameras reached a larger audience, image
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processing went further and further both in automated correction on-device and offline
post-processing using dedicated softwares.

The Grail of computer vision is a perfect simulation of the human brain to understand
dynamic scenes based on visual cues only, especially identifying objects and their movements.
These cognitive functions are necessary for autonomous navigiation and robotics but also
benefit data mining. As more and more documents are digitized, online search of similar
images or automated speech-to-text will need to rely on image processing steps.

One of the most longstanding task in computer vision is object recognition in images,
dealing with both classification and localization. Many visual features have been designed
by experts for various applications, from face detection to animal species classification and
optical character recognition. The common ground of all these works is extracting meaning
from pixels and getting semantics from non-structured image information is also what Earth
Observation is about.

This thesis is therefore at the crossing of remote sensing, computer vision and machine
learning. We will design, implement and validate deep learning techniques for automated
interpretation of Earth Observation data.

1.3 Problem statement

The goal of this thesis is to introduce deep learning techniques for automatic mapping of the
Earth by leveraging large volumes of images. More precisely, we aim to perform semantic
segmentation of remote sensing images to generate land cover and land use maps. This
breaks down in several questions we wish to address:

• What tools can we leverage for automated cartography using Earth Observation data?

• How to deal with multispectral, hyperspectral and Lidar sensors using deep networks?

• Can we leverage multiple observations on the same scene by different sensors to produce
richer maps?

• Is is possible to extract spatially structured geographical information from those im-
ages?

First, there are many tools for image interpreation. Artificial neural networks are popular
in the computer vision state of the art but their application to remote sensing is still new. We
will need to start by studying how convolutional neural networks fare against traditional
image processing techniques on Earth Observation images. In Chapter 2, we will remind the
theorical principles behind deep learning and convolutional neural networks. In Chapter 3,
we will show how the usual region-based classification strategies has reached its limit for
semantic mapping of aerial images and how fully convolutional networks can efficiently
replace it.

Howerver, as we have seen earlier, Earth Observation sensors vastly differ from the
usual digital cameras. Moreover, optical sensors may be completed by Lidar sensors that
do not measure the same physical properties. Indeed, Earth Observation often relies on
hetereogeneous but complementary sensors to produce richer observations. In addition,
many geographical databases are openly available and contain a knowledge yet to be used.
Merging all this data to benefit from the joined strenghts of many sensors would be a
significant advance for automated cartography. Consequently, Chapter 4 will extend results
obtained on red-green-blue (RGB) data to multispectral and hyperspectral acquisitions, and
digital elevation models rasterized from Light Detection And Ranging (Lidar) point clouds.
In Chapter 5, we will introduce multimodal deep network architectures for data fusion, both
to deal with heteregeneous sensors and to inject prior knowledge.
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As generalizing statistical models is a critical roadblock, Chapter 6 will investigate how
well deep convolutional networks perform on very large remote sensing datasets, especially
since mapping the whole globe require robustness to environmental, temporal and weather
variations. We will also study how to deal with small datasets in which few samples are
labeled, and how generative models can help perform data augmentation to learn supervised
models.

Finally, if segmentation of remote sensing images allows us to generate semantic maps,
end users are often more interested in the relationships between geographical objects and
entities. Object-based image analysis is a fundamental topic in remote sensing since it makes
it possible to model structures at local and global scales. In Chapter 7, we will explore
various strategies to enforce spatial structure to the pixel-wise semantic maps produced by
our classification networks.

Chapter 8 will conclude this manuscript and discuss future research topics.

1.4 Contributions

This thesis is built on 4 major contributions.

1. We participate in establishing convolutional neural networks as the new state of the art
for semantic segmentation of remote sensing data.

2. We show that convolutional deep networks can be extended to deal with all usual
optical, such as multispectral and hyperspectral cameras.

3. We introduce novel multimodal architectures for fusion of several heterogeneous
sensors and data inputs.

4. We validate our findings on large datasets which cover significant portions of the globe.

These works have been published in several publications:

Published works in international peer-reviewed journals

Nicolas Audebert, Bertrand Le Saux, and Sébastien Lefèvre. “Segment-before-Detect: Vehicle
Detection and Classification through Semantic Segmentation of Aerial Images”. In: Remote
Sensing 9.4 (Apr. 13, 2017), p. 368. doi: 10.3390/rs9040368

Nicolas Audebert, Bertrand Le Saux, and Sébastien Lefèvre. “Beyond RGB: Very High
Resolution Urban Remote Sensing with Multimodal Deep Networks”. In: ISPRS Journal
of Photogrammetry and Remote Sensing (Nov. 23, 2017). issn: 0924-2716. doi: 10.1016/j.
isprsjprs.2017.11.011

Nicolas Audebert, Bertrand Le Saux, and Sébastien Lefèvre. “Deep Learning for Clas-
sification of Hyperspectral Data: A Comparative Review”. In: IEEE Geoscience and Remote
Sensing Magazine in press (Mar. 2019)

Published works in international peer-reviewed conferences

Nicolas Audebert, Bertrand Le Saux, and Sébastien Lefèvre. “How Useful Is Region-Based
Classification of Remote Sensing Images in a Deep Learning Framework?” In: 2016 IEEE
International Geoscience and Remote Sensing Symposium (IGARSS). July 2016, pp. 5091–5094.
doi: 10.1109/IGARSS.2016.7730327

Nicolas Audebert, Bertrand Le Saux, and Sébastien Lefèvre. “Semantic Segmentation of
Earth Observation Data Using Multimodal and Multi-Scale Deep Networks”. In: Computer
Vision – ACCV 2016. Springer, Cham, Nov. 20, 2016, pp. 180–196. doi: 10.1007/978-3-319-
54181-5_12
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Nicolas Audebert, Bertrand Le Saux, and Sébastien Lefèvre. “Fusion of Heterogeneous
Data in Convolutional Networks for Urban Semantic Labeling”. In: 2017 Joint Urban Remote
Sensing Event (JURSE). Mar. 2017, pp. 1–4. doi: 10.1109/JURSE.2017.7924566

Nicolas Audebert, Bertrand Le Saux, and Sébastien Lefèvre. “Joint Learning from Earth
Observation and OpenStreetMap Data to Get Faster Better Semantic Maps”. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).
Honolulu, United States, July 2017, pp. 1552–1560. doi: 10.1109/CVPRW.2017.199

Nicolas Audebert, Bertrand Le Saux, and Sébastien Lefèvre. “Generative Adversarial
Networks for Realistic Synthesis of Hyperspectral Samples”. In: 2018 IEEE International
Geoscience and Remote Sensing Symposium (IGARSS). July 2018, pp. 5091–5094

Nicolas Audebert et al. “A Real-World Hyperspectral Image Processing Pipeline for
Vegetation and Hydrocarbon Characterization”. In: Proceedings of the 9th Workshop on
Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS). Sept.
2018
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An algorithm must be seen to be believed.

— Donald Knuth
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Summary:

This chapter consists in a introduction to the theory of deep learning for computer
vision, on which the rest of this manuscript relies. We begin with a brief history

of the motivations and the seminal works behind modern artificial neural networks,
with a focus on convolutional neural networks. Then, we study more in depth
the applications of those networks for computer vision and more specifically for
semantic segmentation. Finally, we do a short tour of classical techniques for remote
sensing image classification using machine learning, highlighting the specificities
of these data.
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2.1. Deep learning for computer vision

Figure 2.1: Introductions of Turing [167] and Papert [131], two documents which pioneered artificial
intelligence and computer vision.

The foundations of this thesis lay on many anterior works in computer vision, artificial
intelligence and Earth Observation. In this chapter, we draw the scientific framework on
which we will be able to build later. To begin, we will present the fundamental principles of
deep learning and the mathematical background of artificial (convolutional) neural networks.
Then, we will detail how these statistical models are used for image understanding in a task
called semantic segmentation. Finally, we will discuss the modern approaches for remote
sensing image understanding using machine learning and their peculiarities related to Earth
Observation data.

2.1 Deep learning for computer vision

2.1.1 A brief history of deep learning

Giving cognitive abilities to computers was first theorized by Alan Turing in 1950 [167]
(cf. Fig. 2.1). In Computing Machinery and Intelligence, Turing designs a theorical experiment
that could answer to the following question: “can a machine think?”. According to Turing,
an intelligent computer would be defined by its ability to mimick a human, so that other
individuals would be unable to discern its true nature. However Turing does not look into
“how” a computer could achieve this goal, and therefore leaves the problem unsolved.

Yet, as early as 1943, Warren McCulloch and Walter Pitts already introduced artificial
boolean neuron systems [112] with two states: active and inactive. They define a neuron as
an automata associated to a transfer function that transform a set of inputs into an output
value. Some neurons do not receive any input from another neuron but hold in themselves
the input signal. Other neurons compute logical circuits based on their inputs. McCulloch
and Pitts [112] prove that many predicates from temporal logic can be computed by these
boolean networks. More importantly, an extension of this theory by Stephen Kleene studies
cyclic boolean networks, i.e. recurrent networks. Kleene [82] proves that these networks,
which are actually finite state automata, can model any regular language1.

Concurrently, neurpsychologist Donald Hebb studies the cognitive mechanisms that allow
the brain to learn. He introduces the Hebbian learning theory, according to which a connec-
tion between two neurones strengthens every time they are simultaneously activated [65].
Hebb also sugggests that neurons cluster themselves into “cell assemblies” for which the
activation are synchronized. These clusters would therefore code a neuronal representation
of the signals the brain receives. As we will see, these two ideas have been since a formidable
source of inspiration for artificial intelligence and statistical learning.

1I.e. any language defined by a regular expression.
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In 1957, Frank Rosenblatt defines the perceptron [141], an acyclic neural network similar
to those from McCulloch and Pitts [112]. Inputs and outputs are boolean values and the net-
work has only one layer. The weights of the connections between neurons are automatically
determined using Hebb’s rule [65]. At the same time, Bernard Widrow builds the Adaptive
Linear Neuron (ADALINE) [179], a computer based on memistors also inspired by McCulloch
and Pitts.The ADALINE has a design close to the perceptron: a linear network with one layer
operating on the weighted sum of its inputs. However, Widrow automatically adjust the
weights using a gradient descent algorithm that minimizes the summed squared error. Yet
these two models have a significant drawback. Although the perceptron is guaranteed to find
an optimal border between the data, this holds true only if the data is linearily separable.
Indeed the ADALINE and the perceptron are linear classifiers and cannot solve problems
where the data is not linearily separable. In the Perceptrons book, Minsky and Papert [115]
prove that a perceptron with one hidden layer cannot reproduce the XOR function, despite
its simplicity and so independently of the number of neurons used. At the time, there is
no suitable policy to automatically find the optimal weights of a perceptron with several
hidden layers that could possess an non-linear behaviour. Artificial neural networks are
abandoned for several years. In his PhD thesis defened in 1975 [178], Paul Werbos introduces
a gradient descent algorithm to minimize the error of a multilayer neural networks that
leverages the derivation theorem of composed function – the chain rule. Werbos names this
the backpropagation algorithm. Still, ten years are needed before gradient backpropagation is
used to train multilayer perceptrons [143, 91].2

The theory of feed-forward neural networks becomes interesting again, especially the
multilayer perceptrons. Cybenko [34] proves in 1989 the universal approximation theorem
that states that the set of the functions computable by a perceptron is a dense set of piecewise
continuous functions, provided that the activation function is the sigmoid. This result is
extend by Hornik [69] to all usual activation functions two years later. The formal statement
is given below:

Theorem 1. Let ϕ be a bounded function, monotically increasing and not constant. Let Cn
0 denote

the set of continuous functions defined on [0,1]n. Then:

∀ε > 0,∀F ∈ Cn
0,∃N ∈ N∗, real numbers vi ,bi ∈ R and vectors wi ∈ Rn where i ∈ ~1,n� such as

F̂ : x→
N∑
i=1

viϕ
(
wt

ix + bi
)

is an ε-approximation of F, i.e.:

∀x ∈ [0,1]n,
∣∣∣F(x)− F̂(x)

∣∣∣ < ε .
This means that any smooth function (piecewise continuous on a set of compact spaces)

can be approximated with an arbitrary precision by a perceptron. It proves that artificial
neural networks can reproduce nearly any function, altough it does not give any construction
method. Outside of theorical results, practical uses of neural networks start to appear for
artificial vision and pattern recognition. Handwritten character recognition, especially digits
and letters, is particularly popular. In 1980 Fukushima [52] introduces the Neocognitron,
a multilayer perceptron with a bioinspired structure taking its roots in the works from
Hubel and Wiesel [75, 76] on cats’ and monkeys’ visual cortex. The Neocognitron extracts
local features from the image that are robust to small disturbances. These features are
combined using a cascade architecture. Thanks to this structure, the model can learn from

2The ADALINE is also transformed in a multilayer variant: the MADALINE [180], which uses a specific
optimization algorithm. Indeed, MADALINE uses sign activation function whose derivative is zero nearly
everywhere. Widrow and Lehr converge two years later with a Madaline structure based on the sigmoid
activation, trainable with backpropagation.
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the pixel values, but also recognize local patterns and their variations, which mimicks how
the mammal brain works [96]. In 1989, LeCun et al. [92] propose a multilayer perceptron
architecture for handwritten digit recognition whose first layer is convolutional and trained
by backpropagation. They build on this principle to design the LeNet-5 model [94], the
first modern Convolutional Neural Network (CNN). In 2004 Convolutional Neural Network
(CNN)-based object detection and recognition approaches are competitive – and occasionally
superior – to other approaches su as pixel-based Support Vector Machine (SVM). The first
works using CNN-learnt representations to replace usual ad hoc image features such as SIFT
(Scale-Invariant Feature Transform) [106] and Histograms of Oriented Gradients (HOG) [35]
for object classification appear in the 2000s [150, 72].

In 2006 Hinton and Salakhutdinov [67] introduce autoencoder neural networks that
can compress a dataset by embedding the samples in a space with a lower dimensionality.
Their approach for dimension reduction use a stack of Restricted Boltzmann Machines
(RBM) [1, 145] trained layerwise iteratively. This hybrid model is explored in an article
from 2006 [66] which names it Deep Belief Networks (DBN). Bengio et al. [10] extend this
layerwise pretraining to DBN for regression a year later. Their work suggest that pretraining
initializes deeper layers based on better representations of the abstract features compared to a
random initialization. Yoshua Bengio argues that a good machine learning algorithm should
be able to learn relevant semantic features at various levels of abstraction based on data both
labeled and unlabeled, i.e. in a unsupervised setting [8]. He defends deeper models as more
expressive thanks to their ability to learn representations based on data and justifies it with
recent progress in neurosciences in understanding the visual cortex [151]. The introduction
non-saturating activation functions such as Rectified Linear Unit (ReLU) [56] makes it easier
to optimize a network without pretraining by alleviating the exploding gradient problems
which made the training of very deep networks practically impossible.

2006 was also the year of the first CNN implented on Graphics Processing Unit (GPU) [22]
for automated document processing, unsupervised DBN training [139] and optical character
recognition [27]. In 2011, Dan Cireşan used several CNN methods to reach the first place in
two challenges: chinese character recognition [99] and traffic sign classification [160]. These
CNNs also obtained state of the art performances in latin character recognition and object
classification in small images from the CIFAR-10 dataset [26]. The ImageNet Large-Scale
Visual Recognition Challenge (ILSVRC) image classification challenge starts in 2010 and is
based on the ImageNet dataset [40]. One million images are annotated for a thousand classes
of interest. In 2012 the challenge is won by Krizhevsky, Sutskever, and Hinton [84] using a
GPU implementation of the new AlexNet convolutional neural network, using the Compute
Unified Device Architecture (CUDA) library. AlexNet reaches a 15% top-53 error-rate, while
the second best method only achieves 26%. This unexpected success is commonly pointed as
the beginning of the renewed popularity of deep networks and deep learning in general in
the computer vision community. The ILSVRC competition has been won every year by CNN-
based techniques for object recognition, localization and segmentation. The effectiveness of
deep convolutional networks since 2012 is due to an alignement of three factors: fundamental
progress (ReLU, convolutional networks) that allowed researchers to design deeper networks,
the availability of new large annotated datasets for supervised learning (e.g. ImageNet) and
efficient GPU implementation that made computations tractable.

In the following, we draw the theoretical framework of artificial neural networks and
their optimization for various tasks. We then focus on convolutional models.

2.1.2 Artificial neural networks

The formal definition of an artificial neuron was introduced by McCulloch and Pitts [96]
in 1959. A neuron with a transfer function ϕ operates on a set of n input neurones all of

3A top-5 prediction is rich if the actual label is in the set of the five first predictions given by the model.
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Figure 2.2: Model of an artificial neuron.

x0

x1

x2

x3

x4

x0

w0,0

w1,0

w2,0

w3,0

w 4,0

x1

w
0,1

w1,1

w2,1

w3,1

w4,1

x2

w
0,2

w
1,2

w2,2

w3,2

w4,2

Inputs Hidden layer Outputs

x0
w0,0

w1,0
w 2,0

x1 w0,1

w1,1

w2,1

x2

w0,2

w1,2

w2,2

x3

w
0,3

w1,3

w2,3

x4

w
0,4

w
1,4

w2,4

x5

w
0,5

w
1,5

w
2,5

(a) Perceptron with one hidden layer.
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Figure 2.3: Perceptron with one and several hidden layers. Inputs and outputs can have any dimension
and are pictured as neurons.

which emit a signal x1 . . .xn. The neuron is connected to its inputs by synapses of weight wi .
The input signal x the neuron receives is the weighted sum of the input signals from each
neuron, based on the synaptic weights. The neuron outputs a signal z = ϕ(x) i.e. the image of
its input by its tranfer function. Fig. 2.2 illustrates this model. The activation of a neuron is
given by the formula:

z = ϕ

 n∑
i=1

wixi + b

 . (2.1)

Several neurons can be connected to each other, forming an oriented weighted graph. A
feed-forward neural network is an acyclic neural graph. In practice these graphs are k-partite:
neurons can be grouped in “layers” that connect to each other. For simplicity, inputs and
outputs of a multilayer perceptron are placed in specific layers. The actual learnable weights
are synaptic connections for which at least one end neuron is in the “hidden layers”. These
hidden layers are the interface between intput and output. These networks have a fixed
topology and are parametrized by the set of synaptic weights. Multilayer perceptrons with
one or more hidden layers are described in Fig. 2.3. A layer for which all input neurons are
connected to all neurons from the next layer is called “fully connected”. These layers are one
of the main layer type one can encounter in modern deep networks.
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(a) Saturating activation functions. (b) Non-saturating activation functions.

Figure 2.4: Examples of activation functions.

Many activation functions can be used in neural networks. The only requirements are non-
linearity – otherwise the network would reduce to a perceptron – and that its derivative exists
nearly everywhere to train with the gradient backpropagation algorithm. The activation ϕ is
often chosen so that ϕ and its derivative ϕ′ are monotically increasing. Several commonly
used activation function are pictured in Fig. 2.4a:

• sigmoid, or logistic, function: σ(x) = 1
1+e−x .

• hyperbolic tangent: tanh(x) = 1−e−2x

1+e−2x .

• Heaviside step function: H(x) = 0 if x < 0 and 1 if x ≥ 0.

• sign function: sign(x) = +1 if x > 0 and − 1 if x < 0.

The Heaviside step and the sign functions have null gradients nearly everywhere since
their derivative is the Dirac δ function. This makes these functions unpractical and rarely
used since the backpropagation algorithm does not apply. The sigmoid function was com-
monly used despite the vanishing gradients problem it entailed. While not specific to the
sigmoid, it is particularly strong in reccurent neural networks [68]. The multiplication of
consecutive layers in the network entails a geometric evolution of the gradient norm during
backpropagation. The cumulative product of n gradients through the contractive activation
function (derivative < 1) produces a n+ 1þgradient with a smaller amplitude, and so on. On
the contrary, gradients can explode with an exponentially increasing amplitude for certain
activation functions. This problem worsens with saturating functions such as sigmoid or
hyperbolic tangent since their gradient are bounded in [0,1]. Some works either encouraged
or discouraged the use of these functions. LeCun et al. [93] recommended to use a tweaked
hyperbolic tangent f (x) = 1.7159tanh(2

3x) because it is bounded by [−1,+1] and centered in
0, which is suitable for normalized centered data.

Current activation functions are non-linear and non-saturating to avoid vanishing gra-
dients. Indeed they are considered state of the art since Glorot, Bordes, and Bengio [56]
introduced the ReLU and the SoftPlus functions for deep networks – adapting the idea of
rectified linear units for DBN [118]. They analyzed how these activation functions influenced
the network training and drew three conclusions. First, networks non-saturating activation
functions generalize better than models using tanh. Second, networks trained with ReLU
do not require an unsupervised layerwise pretraining which speeds up greatly the learning
phase. Finally, these models are often sparser than their usual equivalents. ReLU has been
widely adopted since it is simple to implement and efficient to compute (max(0,x)).

Overall most activation functions commonly used are continuous, monotonically in-
creasing, conctractive and pointwise, although all these hypotheses might not be actually
required [125]. Several variants have been introduced around the idea of rectified linear units,
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such as a parametrized counterpart with an α > 0 slope in the negative part, either chosen by
the user (Leaky ReLU [107]) or learnable (Parametrized Rectified Linear Unit (PReLU) [63]).
An everywhere-differentiable alternative has also been introduced: Exponential Linear Unit
(ELU) [29]. These declinations are illustrated in Fig. 2.4b:

• ReLU : ReLU(x) = max(0,x).

• SoftPlus : s+(x) = ln(1 + ex).

• Leaky ReLU : LReLUα(x) = max(0,x)−αmax(0,−x), where α is a hyperparameter.

• PReLU : PReLU(x,α) = max(0,x)−αmax(0,−x), where α is learnable.

• ELU : ELUα(x) = x if x > 0 and α(exp(x)− 1) otherwise.

The universal approximation theorem [34, 69] states that the set of functions computable
with a perceptron is a dense set in the piecewise continuous (on compact spaces) function set.
Another way to frame it is to say that any function f : E→ Rm where E =

⋃
k Ck is a union of

compact subspaces of Rn, continuous on every compact space, can be approximated with an
arbitrary precision ε > 0 by a perceptron. Howerver this statement comes with two strong
limitations. On the one hand, the theorem generalized by Hornik only covers bounded and
monotically increasing activation function, which excludes rectified linear functions such
as ReLU. Sonoda and Murata [158] removed this limitation and proved that the universal
approximation theorem still holds for unbounded activation functions.

On ther other hand, there is a fundamental limitation to the theorem. Altough it guaran-
tees that there is a set of parameters that can approximate the requested function, it does
not give any method to find such a set. Nothing ensures that these weights are reachable
to gradient descent, for example, and there is no indication whatsoever to the network
structure that could achieve the approximation. The theorem holds on shallow networks
with one hidden layers while practical successes are obtained with networks that exhibit an
ever-increasing depth. Especially, deeper networks can approximate more complex functions
using less neurons compared to perceptrons [11, 114]. The hierarchical structure of multi-
layer networks seems to be particularly suited to approximated composed functions while
working around the curse of dimensionality [136]. Howerver this complexifies the network
architecture and adds many new hyperparameters that one has to fiddle with. As there is no
automated construction strategy for deep networks, trial-and-error remains the main way to
design a deep network – or meta-learning in some promising works [193].

2.1.3 Training a deep network

Since there is no systematic way to find the optimal weights of an artificial neural networks,
we need to look for optimization heuristics. The backpropagation algorithm [178, 143, 91]
relies on the famous gradient descent to find the right weights. While nothing ensures that
the local minima found this way are equivalent to the optimal weights hinted at by the
universal approximation theorem, this is the best practical method we can rely on.

The gradient descent algorithm [20] is applied to the model to minimize the total error by
updating the synaptic weights. This “strongest slope” algorithme approximates local minima
of a differantiable function f by looking for stationary points, i.e. points where its gradient is
zero. The fundamental principle is that f decreases more quickly in the opposite direction to
its gradient and works as described in the following.

Definition 1. Gradient descent algorithm:
Let f : Rn→ R be a differentiable function and ∇f its gradient. Let x0 ∈ Rn be an initial point,

ε > 0 a tolerance threshold and α > 0 the descent rate. We define the sequence (xi)i≥0 ∈ RN such as:

xi+1 = xi −α∇f (xi) .

The algorithm stops when ∇f (xi) ≤ ε and returns xi .
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In deep neural networks, the function to be minimized is called the “cost function” or
“loss function” denoted L in the following. Most of the time, L is a measure of the total error
the model makes when predicting over the full training set Ω. Optimizing the network is
finding an approximation of the solution to the equation:

W∗ = argminWL(W,Ω) (2.2)

where the model is parametrized by its synaptic weights W = {w1, . . . ,wm} and a cost function
L.

We can apply the gradient descent algorithm as long as the los function L is differentiable.
Indeed, we compute the update to apply to the weights by propagating the gradient value
from a layer to its predecessor: this is the backpropagation algorithm [178, 93, 143]. The
weights update in the opposite direction of the gradient error with respect to these weights
∇WL(W,Ω).

Definition 2. Gradient descent algorithm applied to a neural network:

1. Assign random values to the weights W.

2. Compute ∇WL(W,Ω) on the whole dataset.

3. While ∇WL(W,Ω) > ε :

• W := W−α∇WL(W,Ω)

Practically speaking, the training datasets can contain millions of samples and Ω can
be quite large. For this reason, we generally use an online version of the algorithm: the
stochastic gradient descent. This version performs a weight update for each training sample
by approximating the average error based on the error on one sample.

Definition 3. Stochastic gradient descent algorithm:

1. Assign random values to the weights W.

2. While the stopping criterion is not reached:

• Randomly choose a sample ω ∈Ω
• W := W−α∇WL(W,ω)

The algorithm stops when the stopping criterion is verified, often after a predefined number of
iterations.

Yet, estimating the gradient ∇WL(W,ω) based on a unique sample is noisy and the
descent can suffer from large direction changes between consecutive iterations. To stabilize
the descent and ease the convergence, we mostly use the mini-batch stochastic gradient
descent. The global error on the dataset is then estimated on a batch (or mini-batch) of
samples, i.e. averaged over a group of k samples:

Definition 4. Batch stochastic gradient descent algorithm:

1. Assign random values to the weights W.

2. While the stopping criterion is not reached:

• Randomly choose k training samples (ω1, . . . ,ωk) ∈Ωk

• W := W−α1
k

∑k
i=1∇WL(W,ωi)

The algorithm stops when the stopping criterion is verified, often after a predefined number of
iterations.
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Since the update is applied on all layers, we need to compute ∂L
∂wi

for all weight vectors

wi that parametrize the ithlayer. Howerver directly computing the gradient ∇L is possible
only on the last layer. To rewind the computation up to the partial derivative with respect to
the previous layers, we can use the backpropagation algorithm. This algorithm actually uses
the chain rule to compute the derivative of composed functions [38, 87] :

Theorem 2. Let f et g be two functions such as f : I→ J ⊂ R and g : J→ R. Let x ∈ I such as f
has a derivative in x. Then, the function h = g ◦ f : I→ R has a derivative in x which value is:

h′(x) = (g ◦ f )′(x) = f ′(x)× g ′(f (x)) .

If f and g are differentiable on I and J respectively, then:

(g ◦ f )′ = f ′ × (g ′ ◦ f ) .

or using Leibniz notation with z = g(y) and y = f (x):

dz
dx

=
dz
dy
×

dy
dx

.

This theorem still holds true for partial derivative of multivariate functions in Rn.
To decrease the error, we can update the weights wk in the opposite direction of the

gradient de
dwk . If zk denotes the output activations of the kthlayer, the chain rule gives,:

∂L
dwk

=
∂L
dzk
× ∂zk

∂wk
=

∂L
∂z(k+1)

× ∂z(k+1)

∂zk
× ∂zk

∂wk
.

This means that we can go backward into the network from the deepest layers to the
earliest ones to backpropagate the gradient ∂L

∂wk . To compute the error gradient with respect
to the weights of a specific layer, we need to compute the gradient of its outputs with respect
to its weights and the gradient of its outputs with respect to its inputs. This step is called the
backward pass.

Actual neural networks do not operate on scalar values but on tensors x,y,z. Nonetheless
the chain rule still applies: we only need to rewrite it using the jacobian matrices J:

JF◦G = JF ◦G · JG

and the backpropagation algorithm still applies.
This is for this reason that vanishing and explosive gradients are a problem. The sequence

of consecutive gradient norms in the backward pass becomes nearly geometrical due to the
successive multiplications. If the jacobian norm is mostly less than 1, the gradient norm goes
to 0. Convergence is either slow or impossible. If the norm is more than 1, then the gradient
increase exponentially and the weight updates become unstable. In practice, we will look for
normalized jacobians, especially during initialization [147].

The model aims to approximate a specific function F . To do so we introduce a proxy loss
function L that measures the approximation error of the network, such as:

L(F̂W(x)−F (x))→ 0⇒ F̂ → F ,

i.e. minimizing the loss entails model convergence to the actual function.
The exact loss function to use depends on the task at hand. For regerssion problems – F

takes its values in a continuous set – we often use a distance in the function space such as the
L1 or L2 norm. For each sample we compare the prediction ŷ to the actual label y with

L1(y, ŷ) = |ŷ − y|
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ou L2(ŷ, y) = ‖ŷ − y‖ .

Using the L2 norm means approximating F using the least square error method. The L1
norm is often more robust to outliers which can be explosive when using the euclidean
distance. In comparison, the L2 distance is differntiable everywhere and is more tolerant to
small errors – since it is contractive on [−1,+1]. Hybrid losses such as the Huber loss can mix
both for an improved robustness.

When F is discrete – e.g. for classification – y is encoded in the one-hot fashion. For
a multi-label classification problem with n classes, if y belongs to class k then the label is
represented by yi = δi,k where δ is the Kronecker delta. This means that y is encoded with the
pattern (0, . . . ,0,1,0, . . . ,0), i.e. zeroes everywhere except for the component number k. The
same cost functions could still be used but we often prefer the cross-entropy:

H(z,y) = −
n∑
i=1

yi log(zi) . (2.3)

The cross-entropy is especially interesting since minimizing its value also means mini-
mizing the Kullback-Leibler divergence between two statistical distributions: ŷ and y, i.e. the
image of F and the image of F̂ . The required condition is that ŷ is a probability vector, i.e.
ŷi ∈ [0,1] and

∑
i ŷi = 1. To achieve this, we can feed the output activations into the softmax

function:

ŷi = zi = softmax(x)i =
exp(xi)∑
j exp(xj )

(2.4)

which generalizes the sigmoid to multiple classes.
Let us stress that the gradient descent algorithm ensures convergence only if L is convex

which is almost never the case for non-trivial deep networks. Several variations of the
stochastic gradient descend have been introduced to improve its convergence properties.
The descent step α in Definition 1 plays an imoprtant role in the optimization of deep
neural networks. It is often named learning rate, since α controls the amplitude of the
weight updates. If α is too high, each update will be large and convergence will be unstable.
If α is too low, it slows down convergence and the algorithm can get stuck in poor local
minima or saddle points. Variations of the gradient descent algorithm introduce specific
heuristic to update the weights. The “momentum” methods are inspired by the kinetic
energy conservation mechanical principle. The gradient “speed” – its norm – is partially kept
between each iteration to reduce oscillations around the level sets of the error surface [138,
120]. Sutskever et al. [161] showed that momentum stochastic gradient descent improved
the model accuracy even with poor initializations. Polyak and Juditsky [137] suggest to use
an asynchronous mini-batch gradient descent algorithm that use the moving average of the
last n gradients as an estimation of the weights update.

Other variations introduce heuristics to adjust the learning rate α during training. Indeed,
nothing requires that α stays constant in the gradient desent algorithm. For example,
one could manually adjust α during the training phase, for example by dividing it by a
constant γ < 1 after some number of iterations. Bottou [16] recommends to use an averaged
stochastic gradient descent with an evolutive learning α that follows αi+1 = α0(1+γ·i)−1, while
Loshchilov and Hutter [105] use a derivative of the simulated annealing algorithm. Howerver
this introduces yet another manual hyperparameter to configure before training. Several
works have therefore looked into adaptive moment methods in which α is automatically
adjusted during training based on various heuristics [42, 166, 185, 81].

Independently from the gradient descent flavor used, the weights initialization is a
critical step for the network optimization. The convergence properties and the performance
of the optimal weights found depend at least partially on the initialization. If unsupervised
layerwise pretrained was once common [66, 10], deep networks are nowadays mostly trained
end-to-end in a supervised fashion. A good initialization strategy should assign random
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values to the weights while avoiding vanishing and exploding gradients. Glorot and Bengio
[55] and He et al. [63] introduced an initialization producing activations that follow a normal
distribution which eases the training and generates reasonable gradients. Saxe, McClelland,
and Ganguli [147] initialize convolutional kernels using random orthogonal matrices to keep
the activation norm constant from one layer to the other and to decorrelate the initial filters.

Because of the stochastic nature of the neural network optimization, the deep learning
community agregated several best practices for practical training [93, 9, 16]. As for shallow
model training, it is common to center and normalize the input data. Image are often
centered by substracting the mean pixel values computed on the whole dataset. In some
cases, especially for images that have a common layout, the mean image is substracted.
Normalizing the standard deviation is less common altough it can happen in some papers.

During training, it is recommended to shuffle the data after each epoch on the dataset
to avoid cycles in the gradient descent [93]. The mini-batch size also impacts the back-
propagation algorithm. Larger batches smooth the gradient estimation and makes for a
more stable descent, yet smaller batches introduce a stochastic noise in the algorithm which
can be beneficial for generalization. Finally, it is often recommended to start training the
network with a large learning rate and to reduce it later when close to optimum to refine
the weights [9]. Hyperparameters for the optimization are often difficult to tune, however it
is possible to validate the parameters on a small subset [16]. Stopping the training is often
done when the validation error stopped increasing (early stopping) or when the training
error does not decreases, altough the latter encourages overfitting.

Most deep learning software libraries implement these best practices and other reg-
ulizations, initializations, learning rate policies and gradient descent flavors. This greatly
simplifies the experimental work and reduces the uncertainty due to diverging practices in-
side the community. However tweaking the hyperparameters impact the final performances.
Robust statistical evaluation by repeating training and averaging resutls, and allocating the
same hyperparameters optimization time to all models, including the baseline, avoids false
conclusions on relative accuracies [124].

Let us remind that altough the gradient descent minimizes the training error, what we
are really interested in is the error on real data. Training the model is done on an empirical
risk that does not necessarily correspond to the actual risk, but the latter is not available
since the real dataset is unlabeled and potentially infinite. We work with the empirical risk
that we can measure, which can result in some level of overfitting. The model can learn some
biased knowledge due to sampling bias in the training set. For example, learning a cats/dogs
classifier where dogs picture were taken during the day and cats pictures were taken at night
would not really generalize: it will overfit on brightness and not learn to recognize animals.

To fight this overfitting, the literature as introduced many regularization techniques that
try to alleviate to emperical nature of the objective function and reduce the impact of the
dataset bias. A first classical regularization is a penalty applied on the network weights. This
method is called weight decay and adds an auxiliary loss related to the euclidean norm of the
weights. The total loss function becomes:

Ltotal = Lcost(W,Ω) +λ
∑
w∈W

w2 .

Krogh and Hertz [85] showed that the weight decay helped reduce the generalization error
of the model.

More recently Dropout [159] was introduced as a regularization technique that could
alleviate overfitting in deep networks. As neural networks are parametrized by millions
of weights, Dropout tries to solve this by randomly deactivating a fraction of the neurons
during the learning phase. At each training iteration, every neuron might be shut down
with a probability p. Its connections to other neurons are severed and its activation is set to
zero. This effectively produces a reduced network and only the weights of the active neurons
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are updated during the backpropagation. During inference all activations are weighted by
p so that the full signal remains constant compared to training. Each node in the network
therefore sees only a part of the dataset and, since connections have been randomly dropped,
each layer has to learn some redundancy to preserve its discrimination power. Weak signals
linked to the sampling bias of the dataset have a lower probability to be used as an informative
signal in the network, which reduces overfitting. Another way to frame Dropout is to consider
it as a stochastic ensembling approach. Dropout will produce many subnetworks that are
concurrently trained. If we suppress neurons at each step with a probability p = 0,5, then it
is equivalent to randomly train a subset of the 2n possible networks where n is the number of
parameters on which Dropout is applied. The final model used for inference is an average
of the reduced networks ensemble. Other regularization strategies are been derived from
Dropout such as DropConnect [177], which removes connections instead of neurons, and the
stochastic pooling from Zeiler and Fergus [186].

An alternative policy to alleviate overfitting is called data augmentation. This consists
in generating fake synthetic samples that are added in the training set. By artificially
increasing the number of training samples, the model can learn from a larger variety of
examples, therefore reducing the sampling bias of the dataset. When dealing with images,
data augmentation is especially easy to perform using geometrical transformations for which
invariance or robustness is expected, such as mirroring or flipping the image, random
rotations or rescaling.

Finally, [77] introduced the Batch Normalization (BN) that has, on some occasions,
been presented as a regularization strategy. Since BN estimates the statistical moments
stochastically, this adds a small noise to the internal activations between two layers that
might reduce the influence of weak signals and therefore alleviate overfitting.

2.1.4 Deep convolutional neural networks

Altough the idea of sharing weights between neurons to perform the same operation every-
where on the image in a efficient manner is due to the Neocognitron [52], it is LeCun et al.
[94] who introduce the convolutional layer. The convolution of two functions f and g is a
commutative bilinear operator, generally noted f ∗ g, which is given by the formula:

(f ∗ g)(x) =
∫ +∞

−∞
f (t)g(x − t)dt . (2.5)

Convolutions are extremly popular in signal processing since it relates to the ubiquitous
Fourier transform for spectral analysis [47]. Indeed the Fourier transform F transforms
convolutions in the real domain into multiplications in the spectral domain and conversely:

F (f ∗ g) = F (f )F (g) . (2.6)

Discrete convolution is omnipresent in image processing as it is involved in the com-
putation of gradients for the SIFT [106] and HOG [35] features. Convolutional filters are
also fundemental in wavelet theory [109] and its applications to image compression (e.g.
the JPEG [37] format) and face detection Viola and Jones [175] thanks to the pseudo-Haar
features [130]. Neurosciences have found that the Gabor filter model – often used as image
features [132] – and the neural activations in the mammal visual cortex exhibited very similar
properties [110, 80]. Some classical filtering operations are pictured in Fig. 2.5, such as dis-
crete gradient computation using Sobel filters [157] or blurring using a Gaussian kernel. It is
worth to note that, altough convolutional filters are very common, there are many non-linear
filters that cannot be expressed as convolutions, such as median filter denoising [49].

The core idea of LeCun et al. [94] is to replace the first layers of a multi-layer perceptron
by a set of learnable convolutions. Neurons are locally grouped and each clique compute
a convolution on a part of the image. To simplify the model, the convolution weights (i.e.
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Figure 2.5: Various convolutional filters applied on the same image.
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Figure 2.6: Convolution operation and variations on an image (figures from [43]).

the kernel) are shared along the image. This means that all groups compute the same
convolution over the whole image. Several convolutions can be computed in parallel to
extract various features. As the convolution kernels are optimized during training, there is a
natural hierarchical representation learning process that occurs. This is especially interesting
since the operators used are well-known and well-suited to image processing. Yosinski et al.
[183] noted that the first convolutional layer of modern deep networks systemtically tend to
resemble to a set of Gabor filters.

Convolution

The convolution operator on discrete functions can be rewritten as:

(f ∗ g)[n] =
+∞∑

k=−∞
f [n]g[k −n] . (2.7)

However this formula is written for one-dimensional signales while images are two-
dimensional arrays. Luckily it is straightforward to extend the convolution operator to
multivariate functions. In 2D, let I : ~1;w�× ~1;h�→ R denote an image of shape w × h and
K : ~1;kw�× ~1;kh�→ R a convolutional kernel of shape kw × kh. We define the filter K such
as:

K(I)[m,n] = K ∗ I[m,n] =
+p∑

i=−p

+q∑
j=−q

I[m− i,n− j] ·K[i, j] , (2.8)
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where p = kw−1
2 and q = kh−1

2 . This operation is illustrated by the Fig. 2.6.
A drawback of this operation is that the product goes through the convolutional kernel K

and the image I in opposite direction with increasing indices on the one hand and decreasing
indices on the other hand. If is often more practical to implement this in software using the
crossed-correlation operator:

K(I)[m,n] = K ? I[m,n] =
+p∑

i=−p

+q∑
j=−q

I[m+ i,n+ j] ·K[i, j] . (2.9)

This operator is simpler to progarm altough it is not commutative anymore. Since K
has learnable parameters, there is no practical difference between a convolution or cross-
correlation operator since the matrices will be identical up to a symetrical transform. Other
operations involved in CNNs are not commutative anyway so losing this property does not
have a significant impact overall. We will use the formulas for the cross-correlation operator
in the rest of this chapter.

Cross-correlation and convolution both are unknown when the operator is computed
along the image borders since the values of I outside of the image are undefined. Generally
these values are never computer and we restrict the convolution product on rows and columns
for which it is well-defined. This results in an slightly smaller image and this is named the
valid cross-correlation. Another solution is to fill the missing values of I using zeroes – a
process called zero-padding – (cf. Fig. 2.6) for as many rows and columns as half the kernel
size in every direction. This is often called the same crossed-correlation as it results in a
filtered image that the exact same dimensions as the input. Finally a last operation consists
in padding as many missing values as necessary so that each element of I is seen by every
element of K. This is called the full cross-correlation4.

Practically speaking, a n-dimensional convolutional layer from a neural network is
parametrized by:

• The shapes (k1, . . . , kn) of its convolutional kernels, nearly always the same in all dimen-
sions,

• The number C of filters, i.e. the number of concurrent convolutions, which defines how
many feature maps are computed by the layer,

• The convolution stride s,

• The padding size p.

In most cases a convolutional layer therefore possess k1 × · · · × kn ×C trainable parameters.
In the 2-dimensional scenario, the convolutional kernels are generally square, i.e. the layer
contains Ck2 parameters.

There are several advantages to using convolution in deep neural networks [58] :

• Convolution operations are sparse since the convolutional kernels are very small
compared to the image size,

• Features extracted by a convolutional layer are equivariant to translation, i.e. a transla-
tion of the input image also translates the output feature maps.

• Convolution weights are shared for the whole image, which makes it possible to detect
the same features at any location in the image with a low memory cost.

4It is worth noting that more sophisticated padding methods exist. Instead of padding with zeroes, one can
pad with arbitrary values, pad using the nearest neighbour or pad using a reflection of the existing data.
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Compared to a fully connected layer, the convolutional layer is not invariant to pixel
permutations because of its dependence on spatial structure. This prior is linked to the
equivariance sought in image processing to various geometrical transforms. We must not
forget that this structural prior does not always hold true. For example anomalies in time
series do not necessarily have the same meaning based on the time at which they occur, while
a 1D convolution would be activated in exactly the same way by the anomaly without any
regard for its position in time. This strong prior is well-suited to image – and especially aerial
and satellite images which present specific regularities. The hierachical CNN architecture
seems tailored for image processing as it allows to decompose images in spaces that are
invariant or equivariant to many transformations [170].

In 2D image processing, neural activations or feature maps are represented as 3-dimensional
tensors (C,W,H) with C the number of channels (sometimes referred to as convolutional
planes), W the width and H the height.

A convolutional layers combines nin input feature maps with the jthconvolutional kernel
Kj :

∀j ∈ ~1;nout�, oj = bj +
nin∑
i=1

K(zi) , (2.10)

or:

∀j ∈ ~1;nout�, oj(m,n) = bj +
nin∑
i=1

+ k−1
2∑

p=− k−1
2

+ k−1
2∑

q=− k−1
2

zi(m− p,n− q) · kj(p,q) . (2.11)

A convolution operator transforms a (Cin,Win,Hin) tensor into a (Cout ,Wout ,Hout) tensor
with the relationship5:

out = in− kernel + 2 · padding + 1 . (2.12)

Strided convolution A first variation of the convolution product consists in virtually pool-
ing the feature maps spatial dimension by a factor s. To do so we only visit elements of I with
indices that are a multiple of s:

Ks(I)(m,n) = Ks ? I =
+p∑

i=−p

+q∑
i=−q

I[s ·m+ i, s ·n+ j] ·K[i, j] . (2.13)

A strided convolution transforms a (Cin,Win,Hin) tensor into a (Cout ,Wout ,Hout) tensor
with the relationship:

out =
⌊

in− kernel + 2 · padding
s

⌋
+ 1 . (2.14)

Dilated convolution The dilated convolution [184], or “convolution à trous”6, consists in
computing a convolution at a lower resolution by skipping some values of I. To do so, the
convolution kernel is virtually dilated by a factor d with missing values replaced by zeroes.
The dilated convolution is computed using the formula:

K(d)(I)(m,n) = Ks ? I =
+p∑

i=−p

+q∑
i=−q

I[m+ d · i,n+ ·j] ·K[i, j] . (2.15)

Output activations after a dilated convolution have a shape:

out =
⌊

in− kernel− (kernel− 1)(dilation− 1) + 2 · padding
s

⌋
+ 1 . (2.16)

5Convolution arithmetic equations are from Dumoulin and Visin [43].
6The “à trous” algorithm [152] applies the same filter at multiple scales using dilated convolutions. The

difference between the two is quite small and will not be debated here.
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Figure 2.7: Max-pooling and max-unpooling in the 2D case.

Transposed convolution The transposed convolution is the inverse of the convolution
operation in the sense that it corresponds to its gradient with respect to its inputs. For a
given convolution kernel k, the tranposed convolution can reconstruct the image I based on
the feature maps Z, with dimensions:

out = (in− 1) · s + kernel− 2 · padding . (2.17)

A simpler reasoning is to see the transposed convolution as a standard convolution with
a fractioned stride, i.e. a strided convolution with a stride s = 1

s′ where s′ ∈ N∗.
This convolution is sometimes (wrongly) named “deconvolution” in literature. There is

an actual mathematical deconvolution operator which is the inverse of the convolution. The
tranposed convolution is useful to visualize the effects of a convolutional layer, for example
in the decoder of convolutional autoencoders [189] or for image super-resolution [41].

Pooling

Pooling Pooling operations are useful to reduce the dimensions of the activation maps
inside the network. It consists in a non-linear filter applied by a non-overlapping sliding
window on the tensor. This filter is generally either the max or the average operator on a
fixed-size window. These are respectively called the max pooling and the average pooling [192]
layers. An of example of such a max-pooling is pictured in Fig. 2.7. In some cases the pooling
window size is not fixed but only the output dimensions are. In this case this is called an
adaptive pooling. It is used in some neural networks to reduce the feature maps dimensions
to an arbitrary shape, often when input dimensions can vary (e.g. for object detection and
semantic segmentation), since the shape of the fully connected layers does not allow size
variations. In addition to the dimension reduction, the pooling operators also introduce an
invariance to local perturbations.

The dimensions of the feature maps are pooling are:

out =
⌊

in− kernel
s

⌋
+ 1 .

The pooling layers do not have any trainable parameter.

Unpooling Unpooling is the inverse of the pooling operator and tries to reconstruct the
input based on the output. Since pooling discards some information, unpooling approximates
the input and gives one possible solution. For average unpooling, the same value will be
copied at several locations in the unpooled image. For maximum unpooling, the maximum
value will be replaced at its original location and the remaining values will be filled with
zeroes, as pictured in Fig. 2.7. The output shape of the unpooled feature maps are:

out = (in− 1) · s + kernel .
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As for pooling, unpooling layers do not have any trainable parameters.

Normalization

Altough data normalization and centering to approximate a Gaussian disitrbution has been
used for a long time ine machine learning, normalization layers that operate directly on the
feature maps inside the networks is relatively recent. Normalization transforms the neural
activations to impose specific statistical properties that are assumed to be beneficial for the
model optimization.

Jarrett et al. [78] suggest to use a local contrast normalization of the feature maps after
the convolutional layers that is inspired by biological models [135]. For a tensor of N feature
maps a1, . . . , aN, the normalized maps zi are given by substracting the local mean value on a
gaussian window:

bi[x,y] = ai[x,y]−
∑
p,q

wp,q · ai[x+ p, j + q]

where wp,q is a gaussian window such as
∑

p,qwp,q = 1 and the normalizing the amplitudes by
the weighted standard deviation of the features on the window,:

zi[x,y] =
bi[x,y]

max(moy(σ[x,y]),σ[x,y])

where σ[x,y] =
(∑

p,qwp,q · b2
i [x+ p,y + q]

) 1
2 .

The seminal work of Krizhevsky, Sutskever, and Hinton [84] introduces another local
normalization layer, Local Response Normalization (LRN), that inhibates the features maps
which are in the neighbourhood of a strongly excited neuron. This process is inspired by
the lateral inhibition of biological neuron and resulted in a greater generalization ability.
Contrary to the contrast normalization of Jarrett et al. [78], this layer does not apply on
a local neighbourhood but along the feature maps dimension on adjacent neurons. The
normalization is written as a kernel applied to the 2D activation maps. For a given tensor of
N activation maps a1, . . . , aN, the normalized features zi are given by:

zi[x,y] =
ai[x,y](

k +α
∑min(N−1,i+n/2)

j=max(0,i−n/2) (aj [x,y])2
)β .

where n denotes the size of the neighbourhood to consider (in the channel dimension). This
operation normalizes the full activation vector (a1[x,y], a2[x,y], . . . , aN[x,y]) at every location
x,y in the feature maps.

The most common normalization layer in the literature is the BN [77]. This process
consists in a normalizing the first and second order statistical moments of the activations for
each plane independently. The moments are estimated batch-wise and therefore this layer
requires a stochastic gradient descent-based optimizer. For a N-sized batch, the network
computes at each step on the (N,C,W,H) tensor as follows:

Definition 5. Batch normalization algorithm:
Let a(n)

i , i ∈ ~1,C� denote the nthoutput activation plane of a given layer. During the training
phase, the mean µ and the variance σ2 are computed on-the-fly based on the mini-batch statistics:

µi =
1
N

N∑
n=1

a
(n)
i and σ2

i =
1
N

N∑
n=1

(a(n)
i − µi)

2

The sliding averages of µ and σ2 on the full dataset are stored in-memory and reused during
the inference phase so that the network becomes batch-size independent.

25



2.2. Deep learning for semantic segmentation

In both situations, the normalized activations â are computed with the relationship:

âi =
ai − µi√
σ2
i + ε

.

The batch normalization is generally followed by an affine transform zi = αâi + β.7 The
original batch normalization was introduced for 2D feature maps but can be extended to 1D
and 3D activations.

In practice the BN makes the gradient flow during backpropagation independent from
the standard deviation of each layer weights. This allows to the optimization of deeper
network since activations and gradients are less sensitive to vanishing or explosive behaviours.
Practically speaking, BN often improves the overall model accuracy and significantly speeds
up the convergence by smoothing the loss surface [146]. This normalization is used in most
of the modern deep network architectures.

The non-linear activation function is applied after the convolutional layer either before
or after the normalization depending on the model.

Fully connected layer

A fully connected layer is a bipartite complete graph in which all input neurons are connected
by synapses to all output neurons. This is actually the same as the Perceptron from Rosenblatt
[141]. The non-linearity is applied as an activation function on the output vector. A fully
connected layer can be visualized as a simple matrix multiplication which projects a vector of
shape 1×N into a vector of shape 1×M through a learnable weight matrix N×M. Dropout [159]
is most the time used on the fully connected layers. Indeed, the weight matrix can contain
a lot of parameters and therefore are the most sensitive to overfitting. On the opposite,
convolutional layers are rarely used in conjunction to Dropout as the stochastic removal of
multiple neurons could have adverse effects on the activation map spatial structure.

2.2 Deep learning for semantic segmentation

2.2.1 From classification to segmentation

Image segmentation is one of the first task considered for artificial vision. The myth says
that Minsky ask to his then student Gerald Sussman to “spend the summer linking a camera
to a computer and getting the computer to describe what it saw” in 19648. Minsky and Papert

envisioned for their Summer Vision Project (cf. Fig. 2.1) to “construct a system of programs
which will divide a vidisector picture9 into regions such as: likely objects, likely background
areas, chaos. [...] The final goal is “object identification which will actually name objects
by matching them with a vocabulary of known objects” [131]. Since the beginning, pat-
tern recognition has been interested in dividing images based on its semantic content for
visual understanding (cf. Fig. 2.8). Altough this task may seem trivial for a human, it is a
significant challenge for the computer. Minsky’s team was quickly confronted to Moravec’s
paradox [117]: “it is comparatively easy to make computers exhibit adult level performance
on intelligence tests or playing checkers, and difficult or impossible to give them the skills of
a one-year-old when it comes to perception and mobility”.

7If this is the case, then the BN layer has 2C trainable parameters.
8As reported by Szeliski [165], citing Boden [12] who quotes Crevier [32].
9The vidisector was an image dissector invented by Philo Farnsworth in 1927. It uses the same principle as

a cathode ray tube. The device receives light which excites a photocathode and emits electrons. The resulting
electrical signal can be used to encode the image. It is the opposite of the old TV screen.
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Figure 2.8: Classification and segmentation results on the same imagee. Classification is focused
on recognizing objects in the image while segmentation is performed on every pixel. Image credits:
PIRO4D (CC0).
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Figure 2.9: LeNet-5 architecture [94].

Many studies have been dedicated to object recognition, i.e. identifying the objects
pictured in an image. We will call this task, which consists in mapping an image to one or
more objects based on a vocabulary, “object classification”. This has been the focus of the
computer vision community for many years, from ad hoc features [169] to learning-based
ones [174] and probabilistic modeling [148]. Several large-scale labeled datasets have been
published, such as CIFAR-10 and CIFAR-100 [83], followed by ImageNet [40, 144] made
possible the recent successes of deep convolutional neural networks. Many other specialized
datasets played a significant role, such as the handwritten digits database MNIST [94] or
traffic sign recognition [160] and chinese characters [99] datasets.

The LeNet-5 architecture was designed by LeCun et al. [94] and defines the standard
structure of a CNN. The network is comprised of two convolutional layers followed by
three fully connected layers as pictured in Fig. 2.9. The convolutional part performs the
feature extraction in the image domain while the fully connected layers act like as multilayer
perceptron computing the final classification based on the feature vector. LeNet-5 was
originally designed for handwritten grayscale digits in 32×32 images. In comparison, the
convolution kernels are quite large: 5× 5. The first layer C1 has 6 kernels, i.e. six feature
maps are produced. They are pooled with a stride 2 and fed to the next convolutional layer
C2. Each of the 16 convolution kernels from C2 generates a map corresponding to the sum of
all planes from C1 filtered using this kernel. The maps are once again pooled which results
in a tensor of shape (16,5,5). It is flattened in a vector 1× 400 used as an input to a first fully
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Figure 2.10: AlexNet architecture [84].

connected layer of size 120 and a second one of size 84. Finally, this feature vector is used as
an input to the last fully connected layer of size 10, each activation corresponding to a digit.
The output is transformed by a softmax activation to minimize to cross-entropy using the
backpropagation algorithm.

Due to the fully connected layers, the number of neurons is fixed, which requires the fea-
ture maps extracted by the convolutional part to have specific dimensions. This requirement
in turn constrains the size of the input image to be always the same. Using image with other
shapes would require to retrain the fully connected layers with the right number of neurons.
This drawback is shared by most CNNs.

The AlexNet AlexNet [84] network uses a similar approach altough it works on color
images. This model is detailed in Fig. 2.10 and consists in 8 layers, 5 convolutional and 3
fully connected. AlexNet processess 224× 224 red-green-blue (RGB) images. The first layer
applies a large convolutional 11× 11 convolutional kernel on the image followed a max-
pooling to reduce the image dimensions. The feature maps are 96× 55× 55 and 256× 27× 27
after respectively the first and second convolutional layers. An LRN layer is applied after the
first two convolutions to improve the model generalization capacity. The convolutional part
of AlexNet is desgined so that the number of convolution planes increases while the spatial
dimensions decrease. This maintains the number of activations in the same ballpark across
the model and enhances the representational expressiveness of the model. The next three
convolutional layers produce 384× 13× 13 and 256× 13× 13 tensors which are finally pooled
into 256 feature maps of size 7× 7. This representation is flattened into a unidimensional
vector of length 12 544. The fully connected layer compress it into 2048 and project it into
the classification space of dimension 1000, one for each of ImageNet’s class of interest [144].
This model won the ILSVRC [144] competition in 2012 with a 15.3% top-5 error rate.

Zeiler and Fergus [187] worked on the AlexNet model to understand what were its
strengths and weaknesses. They introduced a deconvolutional part10 to inverse the con-
volutional layers and map the internal feature maps to the original pixel locations in the
input image. The resulting Deconvnet, using unpooling layers and transposed convolutions,
allow them to “see” the features learnt by AlexNet. Moreover they inspect the convolutional
filters trained in the earlier layers and find several intriguing properties. First, the features
learnt in the deeper levels are more invariant to geometric and color transforms than the first
layers, meaning that they represent more abstract concepts. Second, it appears that the first
convolutions consist in high and low-frequency filters but drop most of the middle frequency
information. Therefore they replace the first layer and its 11× 11 kernels by smaller 7× 7
convolutions with a stride 2 instead of 4 to preserve more information. They show that the
filters learnt this way are more diverse and that there are less “dead” kernels with a negligible
amplitude. Finally, visualizing the internal feature maps show that they are far from random,
but that neurons activate on image parts such as wheels, faces, etc.

10Actually a decoder based on transposed convolutions.
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Figure 2.11: VGG-16 architecture [156].
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Figure 2.12: GoogLeNet architecture [162].

The VGG-16 model refines further the CNN architecture and introduce the “small ker-
nel” paradigm. Indeed Chatfield et al. [21] and Simonyan and Zisserman [156] suggest
that it is easier to train a stack of several 3× 3 convolutions than one 11× 11 convolutional
layer. Moreover the presence of additional non-linearities might help increase the network
expressiveness regarding composed functions. The VGG-16 replaces every large standard con-
volution by a stack of 2 or 3 convolutional layers with a 3× 3 kernel as described in Fig. 2.11.
The reference model – VGG-16 – consists of 16 layers, 13 of which are convolutional with
the last 3 fully connected, following the standard set by LeNet and AlexNet. The network
is divided in 5 consecutive blocks followed by a max-pooling of stride 2. The first two
blocks contain 2 convolutional layers and the next contain 3 convolutional layers. The final
activation maps are 512× 7× 7, i.e. VGG-16 reduce the image spatial dimensions by a factor
32. This 25 088-long vector is then reduced to 4096 and classified into the 1000 classes of
ImageNet. Dropout is applied on the fully connected layers to prevent overfitting. These
enhancements on the usual CNN model improved in 2014 the error rate by 7.4% on object
recognition during the ILSVRC.

Independently, Szegedy et al. [162] introduce the 22-layers deep GoogLeNet model. This
architecture is designed around the new Inception module that applies several convolutions
concurrently on the same feature maps. The principle is to apply various kernels – with
different sizes – on the same activation map to perform multi-scale feature extraction, either
using 1× 1 convolutions – i.e. pixel-wise linear combination followed by an activation, pool-
ing, 3× 3 or 5× 5 convolutions. This couples various features that possess the translation
invariance due to pooling and the equivariance due to convolutions, allowing the representa-
tion to model a larger diversity of situations. The Inception module is illustrated by Fig. 2.13
while the full GoogLeNet network is detailed in Fig. 2.12. Since the network is relatively
deep (22 layers), its authors suggest to ease the optimization of the lower layers by adding
an intermediate classifier based on the middle feature maps after the Inception module (4a)
and (4d). This deep supervision already showed to help fight vanishing gradients [95] and
using it in deep networks makes sense. GoogLeNet makes the error rate on the ILSVRC
drop to 6.4% for object recognition. It is subsequently improved [163] by replacing the
5× 5 convolutional layer of the Inception module by two 3× 3 convolutions as suggested for
the VGG models [156]. It is also one of the first networks to use the Batch Normalization
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Figure 2.16: Dense convolutional block [74].

layer [77].
In 2015 He et al. [64] reduce the top-5 error rate on ImageNet to only 3.5% during

the ILSVRC. Their approach involve a very deep network comprised of more than 100
convolutional layers. The optimization is possible using BN on the one hand and residual
learning on the other hand. The latter is a new contribution that breaks the acyclic nature
of feed-forward deep networks by introducing shortcut connections – or skip connections –
that bypass some layers. These residual connections are an identity operation that allow both
activations and gradients to freely flow in the whole network without exploding or vanishing.
Instead of approximating f : x→ f (x), the residual block learns an estimate of f̂ : x→ f (x)−x
which should have a smaller norm. The convolutional residual block is pictured in Fig. 2.15
and an example of ResNet model with 34 layers is detailed in Fig. 2.17. The introduction
of the residual learning paradigm significantly changes the usual CNN design and switches
the convolutional block by its residaul counterpart. ResNet models contain many layers
but comparatively few parameters since only the last one is fully connected. As explained
before, the fully connected layer generally concentrate most of a network weights and are also
the most sensitive to overfitting, requiring regularization techniques such as Dropout [159].
ResNet only 3× 3 convolutions, except for the first layer which is a 7× 7 convolution with a
stride of 2 for dimension reduction purposes. It is interesting to see that the final flattening
of the feature maps is done using an adaptive pooling. No matter the size of the input
image: the adaptive pooling will average the activations globally on the feature maps to
generate the expected feature vector for the final fully connected layer. Howerver the large
number of activations – and gradients – to compute make ResNet costly both in memory and
computation time. ResNet models are rarely practical on large images. The Inception module
has also been improved usnig residual connection in yet another variation [164].

The reuse of intermediate feature maps propagated to deeper layers improves the model
performances as multiple abstraction levels can be combined for the final decision. Several
studies have argued that these techniques are actually a way to ensemble several models
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Figure 2.18: DenseNet-121 architecture [74].

in one as the activations can follow multiple paths in the network graph [173, 73]. Yet,
the residual learning paradigm introduces shortcut connections that are restricted to the
feature maps from the previous layer. Huang et al. [74] itroduce the DenseNet architecture
comprised of dense shortcut connections, in which the activation maps from the earlier
layers are propagated to all subsequent layers. To bound the exponential progression of the
number of parameters, the model is divided in dense blocks with internal dense connections,
as pictured in Fig. 2.18. A dense block is illustrated in Fig. 2.16. The skip connections
allow to gradient to immediately reach shallow layers from the deep ones, which acts as
a form of deep supervision [95]. A convolutional layer is used a transition between two
blocks to reduce the number of planes, followed by a max-pooling layer to reduce the spatial
dimensions of the activations. This architecture improved the state of the art top-5 accuracy
on the ILSVRC 2012 validation test compared to the ResNet models. Yet, once again, altough
DenseNet are less wasteful in parameters than traditional CNNs thanks to the absence
of fully connected layers, the skip connections induce a large memory overhead to store
activations and gradients.

Another architecture enhancement recently introduced is the depthwise separable convolu-
tion from Chollet [25]. This convolution applies one filter per plane in the activation tensor.
The features are then recombined using a pixel-wise 1× 1 convolution. It is a special use case
of the usual convolution in which each tensor plane is filtered through one – and only one –
kernel, as illustrated by the Fig. 2.14. The depthwise separable convolutions are suggested
to replace the costly Inception and improved the GoogLeNet accuracy on the ImageNet and
JFT (an internal dataset from Google) datasets. One advantage of using depthwise separable
convolutions is that they achieve the same operation than traditional convolutions with less
parameters. Indeed a k1 ×k2 convolution applied on Nin activation maps and producing Nout

feature maps require k1 × k2 ×Nin ×Nout parameters. The depthwise separable convolution
needs Nin×Nin×k1×k2 parameters for the first layer and Nin×Nout for the next, i.e. a total of
Nin × (Nin · k1 · k2 + Nout) parameters which is interesting in the common Nout ≥ Nin scenario.
These convolutions are effecient to compute and are popular for real-time and embedded
applications [70].

If these achievements are promising, we must not forget that image classification is a
somewhat limited task regarding scene understanding. Especially, object recognition only
gives a binary information about the absence or presence of an object and gives no clue
about its location. The first object localization sought to find objects by extracting dense
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Figure 2.19: Fully convolutional AlexNet introduced by Long, Shelhamer, and Darrell [104].

features over the image, on top of which cascaded multi-scale classifiers could detect objects
in various sub-regions. This is a standard approach that was used with SIFT [106] features,
the pseudo-Haar from the face detector of Viola and Jones [175] or the HOG features [35].
Deep network-based approaches for object detection using a similar sub-region classification
strategy quickly appear after 2012 [53, 102, 54], overthrowing most traditional localization
techniques based on candidate window search (e.g. selective search) and expert features [60,
168]. The principle is however quite similar between these two families. A dense feature
extraction is performed on the image to identify which regions could contain an object of
interest. Yet these localization techniques still do not solve the problem described by Papert

in 1966. It is not only a matter of finding the object in the image, but more a matter of
determining its shape and separating it from the background, as shown in Fig. 2.8. This task,
called semantic segmentation, is the mapping between a label and every pixel of an image.

Several semantic segmentation datasets have been built by the computer vision commu-
nity to benchmark various methods, most of them consisting in every images such as PASCAL
VOC [44] and Microsoft COCO [98], or autonomous driving scenarios for databases such
as CamVid [19], Cityscapes [30] or Mapillary Vistas [121]. The first semantic segmentation
algorithms used classifiers applied on dense features computed on the whole and grouped in
homogeneous areas using a post-processing [154, 155]. Deep convolutional networks have
been used to tackle semantic segmentation since the convolutions are efficient to compute a
dense pixel-wise classification [59, 28] or simply as a standard image classifier applied on
candidate regions [45, 149]. Indeed the feature maps computed by the convolutional layers
preserve the visual structure of the image. It is generally feasible to map each feature to one
or more pixels. Therefore this feature extractor is very efficient for object localization and
has been widely used by the community [194]. We will detail further these approaches in
the Chapter 3. In the meantime, we will focus on fully convolutional networks designed
for dense pixel-wise classification. These models are a natural evolution of dense feature
extraction approaches that allow an end-to-end training for semantic segmentation.

2.2.2 Fully convolutional models

The modern Fully Convolutional Network (FCN) architecture for semantic segmentation was
popularized by Long, Shelhamer, and Darrell [104]. The essence of these models is to only
work with convolutional layers, or rather to exclude completely the fully connected ones
(cf. Fig. 2.19). This allows the activation maps to preserve the 2D image dimensions and its
spatial structure, so that features can be replaced on the input image grid using a simple
upsampling such as a bilinear interpolation. Long, Shelhamer, and Darrell [104] chose to
transform the first fully connected layer into a convolution with a large kernel that coves the
full activation maps. Indeed these two operations are mathematically the same but expressing
it as a convolution removes the constraint on the input size. The first fully connected layer
from AlexNet is replaced by a 7× 7 convolution and the next ones by 1× 1 kernels. This
transformation preserves the network weights which is very interesting since AlexNet has
already been pretrained for image classification on ImageNet. This modification is applied on
VGG-16 where the pretrained Imagnet weights are reused in its fully convolutional version
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thanks to this “convolutionalization” process. Instead a probability vector, the model now
predicts a dense classification at resolution 1 : 32. This model is used to initialize a depper
network producing a finer segmentation at resolution 1 : 16 and then yet another network
at resolution 1 : 8 using an upsampling decoder. This bootstrapping approach based on
pretraining signifcantly improved the state of the art on various semantic segmentation
datasets at the time and more prominently on the famous PASCAL VOC [44].

Several improvements to the FCN architecture have been introduced in the literature for
semantic segmentation of natural images. Some works focused on replacing the standard
convolutional layers by dilated ones in the VGG-16 architecture [156]. For example Chen et al.
[23] suggest to remove the maxpooling layers to avoid downsampling the image and loosing
useful spatial information, while replacing the convolutions by dilated ones to enlarge the
network receptive field. They also apply a Conditional Random Field (CRF) post-processing
as a spatial regularizer on the resulting maps. In the same vein, Yu and Koltun [184] adopted
the dilated convolution to agregate activation maps at multiple scales, which combines a
larger receptive field with the parallel convolutional kernels from the Inception module [162].
Both models aim to learn a dense feature extraction and classification on the whole image
and tweak the original CNN architecture to be more suited to the semantic segmentation
task. Yet the final segmentation remains downsampled by a factor 4 or 8 compared to the
input image.

Concurrently to these works, several derivatives of the FCN model have appeared, in-
spired by the convolutional autoencodeur archietcture [189]. The FCN from Long, Shelhamer,
and Darrell [104] use a deep encoder similar to the convolutional part of a CNN, they use a
shallow decoder based on deconvolutions to perform the upsampling. While this decoding
strategy is efficient it also loses the benefit of high resolution images. Therefore symetrical
encoder-decoder architectuers have been designed so that the low resolution feature maps
coming out of the encoder can be projected into the classification space with a high spatial
resolution, either using transposed convolutions/deconvolutions [119, 123] or using a sparse
max-unpooling [4]. The U-Net architecture [140] uses skip connections to forward the en-
coded feature maps directly to the decoder so that the transposed convolutional layers can
leverage both highly-abstract and low-level features to reconstruct the spatial resolution.
These approaches remain pretrained using the CNN filters from the VGG-16 classifier. The
symetrical architecture is useful to produce semantic maps at the same resolution as the input
image thanks to the decoder that will iteratively upsample the features maps generated by
the encoder.

As for image classification, ResNet and DenseNet models have also been successfully
applie dto semantic segmentation. The main obstacle to using these models for full image
segmentation was their significant computational cost, especially regarding the memory
required to store the large number of intermediate activation maps and gradients. Thanks to
always more powerful GPUs, Wu, Shen, and Van Den Hengel [181] were able to introduce
a first ResNet-based semantic segmentation model which has also been adopted by the
DeepLab model [23]. The memory consumption is reduced by downsampling the final
semantic maps by a factor 1 : 4 as originally done by Long, Shelhamer, and Darrell [104].
More recently a fully convolutional DenseNet architecture has been introduced [79] for
semantic segmentation using a symetrical encoder-decoder with skip connections backbone
similar to U-Net [140]. Also relying on the skip connection principle, the GridNet model [48]
looked into unconventional network structurse and introduced a model based on an ensemble
of interconnected parallel ResNet. Activations can flow forward in the ResNet – layer by
layer or skipping through using the identity connection – but also from laterally from one
model to the other. This allow the feature maps to follow multiple paths in a “grid” of layers.
This idea is also core to the work of Liu et al. [100] who use a decoder with multiplte paths in
a convolutional network.

Some works investigated improvements to the semantic segmentation pipeline that did
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not directly deal with the network architecture. Refining the semantic maps has been a
quite successful topic of interesting, especially using structured graphical models as a post-
processing for regularization. CRF have been in several ways to be jointly optimized with an
FCN, e.g. as a learnable reccurrent neural network [190] or as post-processing [2].

Finally several multi-scale approaches for semantic segmentation have been introduced.
Chen et al. [23], for one, integrated multi-scale predictions in the DeepLab model, all
predicted maps being interpolated and averaged to produce the final classification. Others
have used multiple convolutional kernel with variable sizes, either by using the dilation
factor [184] or introducing Inception-like modules in the network [119, 188]. Peng et al.
[133] proposed a global deconvolutional module that observes the whole image to model
long-distance spatial relationships between objects to facilitate the global scene parsing.
They combine this trick with residual learning to refine the object edges. Overall multi-scale
inference for semantic segmentation mostly rely on parallel convolutions that produce a
pyramid of activations at multiple resolutions.

To summarize, semantic segmentation of multimedia images is a task that has been
frequently studied in the computer vision literature. FCN models have pushed further
the state of the art on various datasets such as Microsoft COCO [98], PASCAL VOC [44],
Cityscapes [30] and ADE20k [191]. However most works have dealt with everyday scene
understanding: indoor images or autonomous driving scenarios where multiples objects
can occur from various point of views, sometimes with occlusions, and with acquisitions
based on digital cameras that are often consumer-grade. A major contribution of this thesis
consists in providing a better understanding of how Earth Observation images can benefit
from architectures that have been mainly designed for such multimedia data.

(a) Lidar image of North Carolina
(U.S.A.). Color corresponds to

height.
Image credits: Cintos (public domain, Wikimedia

Commons)

(b) Composite RGB rendering of a
multispectral Sentinel-2 image of

the Viti Levu island (Fiji).
Image credits: Copernicus Sentinel data processed

by ESA (CC BY-SA 3.0 IGO)

(c) SAR image acquired by
Sentinel-1 over the Dotson ice shelf

(Antarctica).
Image credits: Copernicus Sentinel data processed

by A. Hogg/CPOM

Figure 2.20: Earth Observation is achieved through a large battery of sensors, each with its specificities.

2.3 Machine learning for Earth Observation image interpretaion

Remote sensing image interpretation mobilizes similar cognitive functions to those used to
parse everyday images. It is no surprise that image processing and computer vision algo-
rithms are ubiquituous in photointerpretation. However Earth Observation is not the same
as traditional photography. Both the sensors and the viewpoint are peculiar. Automating
cartography based on aerial and satellite image is not simply a matter of computer vision.
Remote sensing for Earth Observation relies both on artificial perception using machine
learning and signal processing tuned to the spatial sensors that have nothing in common
with consumer-grade digital cameras.
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Figure 2.21: A multispectral sensor acquires simultaneously light intensities in several bands dis-
tributed on the infrared, visible and sometimes ultraviolet domains.

2.3.1 The many sensor types

Various images acquired by different Earth Observation sensors are pictured in Fig. 2.20.
If aerial images are often acquired using standard RGB color cameras, satellite images use
sophisticated sensors that have been designed for the pecularities of an elevated viewpoint.
For example, some sensors can see a rich spectral information outside the visible wavelengths
while others have been chosen for their ability to see through the cloud cover or because they
can measure heat, elevation or other physical properties.

A common example is that of the infrared sensor which is often used in conjunction to
color acquisitions. Infrared cameras are popular – included for aerial imaging – since they
can see between 780 nm and 2500 nm. In the near-infrared domain, it helps detect vegetation
due to high reflectance of chlorophyll for these wavelengths. In the short infrared domain,
it can be used to estimate temperature thanks to Wien’s law. Those thermal cameras are
especially useful in space where Earth residual heat is weaker.

The Fig. 2.21 describe a multispectral camera or superspectral that, based on the same
principle, can take pictures of a scene in several wavelength bands more or less wide which
can be indifferently in the visible spectrum or in infrared/ultraviolet. Such a sensor produces
multichannel images – generally ten or so channels – that the human eye cannot directly
understand. One can reconstruct a natural color RGB image by compositing the intensities
from the channels corresponding to the red, green and blue wavelengths. Multispectral
acquisitions can exhibit different spatial resolution depending on the channel. For exam-
ple satellites Sentinel-2A and Sentinel-2B produce images at ground sampling resolution
10 m/px in the visible domain, but some channels – especially in the infrared spectrum –
have a resolution of 20 m/px or even as low as 60 m/px. Color images from satellite sensors
with the highest spatial resolution reach about 30 cm/px, while aerial images can go up to
5 cm/px and sometimes even better using flying Unmanned Aerial Vehicles (UAVs). For this
reason it is common to use both multispectral and panchromatic acquisitions at the same
time for satellite sensors. The panchromatic image does not distinguish color and produces a
grayscale image but with a higher ground sampling resolution. In France, the the Pléaides
satellite constellation constellation performs a simultaneous panchromatic acquisition at
70 cm/px Ground Sample Distance (GSD), resampled at 50 cm/px, and at multispectral
acquisition at 2.8 m/px GSD resampled at 2 m/px.

An extreme case of multispectral imaging is hyperspectral imagery, which consists in
performing acquisitions on tens or hundreds of identical narrow spectral bands regularly
distributed along the desired range. The camera sweeps the full light spectrum and returns a
discrete estimation of what has been reflected, as pictured in the Fig. 2.22. Depending on the
spectral resolution – often around 10 nm – and the width of spectral domain, the number of
bands can go from a few dozens to several hundreds of bands. This kind of camera is useful
to reconstruct the full reflected light intensity with respect to the wavelength for each pixel.
As every material reflects sunlight differently depending on its albedo, this information can
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Figure 2.22: A hyperspectral sensor acquires simultaneously multiple narrow spectral bands regularly
distributed along its spectral domain.

Modèle numérique de terrain
Modèle numérique d'élévation

Figure 2.23: Difference between DTM and DSM.

be leveraged to characterize precisely the composition of the observed objects. The drawback
of these hyperspectral cameras is their low spatial resolution which is significantly worse
than those of other optical sensors. Indeed hyperspectral images have a GSD of about 1 m/px
from an airplane and about 30 m/px from space.

Note that all optical sensors that we discussed here are passive; they only receive light
that has been reflected or emitted by the observed area. These sensors are therefore sensitive
to environmental brightness conditions and meteorological perturbations such as clouds
which can occlude partially or totally objects of interest. Lots of satellites use active sensors
that emit a signal and measure the response. The most common satellites of the sort are radar
satellites and more specifically Synthetic Aperture Radar (SAR) ones which send one or more
electromagnetic waves of which they measure the reflection to extract physical parameters
from the observed area. SAR can pierce through the cloud cover, however it does not produce
images stricly speaking.

Another active sensor is the Light Detection And Ranging (Lidar), that emits a laser pulse
and measures its echo. Finding the location of the echo’s maximum amplitude makes it
possible to estimate the time needed by the photons to reach the target and come back, i.e. it
gives an estimation of the distance the particles covered. These sensors are very common
in remote sensing and in robotics for topographic surveys and 3D reconstruction. Yet laser
measurements cover only one point at a time and the sensor only produces sparse point
clouds. Satellite Lidar sensors measure about one point every 20 m, while air-based ones
can do one measurment every 10 cm. Once the point cloud has been generated, one can
generate a volumic mesh which is a topographic model of the area. In remote sensing it is
common to rasterize this mesh, i.e. to project it on a 2D plane, to obtain either a Digital
Terrain Model (DTM)) or a Digital Surface Model (DSM) depending on its accuracy. The DSM
differs from the Digital Terrain Model (DTM)) by taking into account above-ground objects
that elevate themselves on the top of the underlying terrain as pictured in Fig. 2.23. The
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difference between these to values is called the normalized Digital Surface Model (nDSM): it
is the normalized height of above-ground points with respect to the terrain.

This manuscript presents works that focus on optical acquisitions for cartography. How-
ever we will also use ancillary data, derivated from Lidar point clouds or froming geographic
information systems (GIS).

2.3.2 Machine learning and remote sensing

As we have seen remote sensing data come in multiple favors: multispectral cameras, hyper-
spectral imagerys, SAR, Lidar. . . There are various machine learning techniques that can be
applied to extract information from Earth Observation data without human intervention.

Feature extraction

Once data has been acquired and preprocessed, it must encoded in a way that is suitable for
classification. More specifically we generally choose to project the data into a representation
space in which classification will be easier. We detail below some commonly used approaches
from the state of the art.

The simplest representation is based on the raw data itself, sometimes after normalization.
The classifier can directly be applied on luminance or reflectance pixel values. However a
128× 128 RGB image would be represented as a vector of length 128×128×3 = 49152, which
makes the computation intractable for most usual statistical models. This enforces a limit on
the number of pixels that can used as features and generally, this kind of classification can
only deal with individual pixels or very small regions. These approaches are very common
for hyperspectral image processing [46, 62], but can also be found in multispectral and color
image processing [39].

The raw data can be combined to hand-crafted expert features such as statistical moments
or the first and second order derivatives of the signal. For example the Lidar signal is often
complemented by the local deviation to the average height, which is a discriminant feature
to separate various objects [61, 97, 90]. The local entropy is another feature commonly found
in SAR image processing for remote sensing [5].

Moreover expert knowledge about the physics of multispectral and SAR sensors is often
beneficial for the classifier. Reflectance ratios between various wavelengths can be used
to characterize specific surfaces and materials. Two examples of such indices are the very
popular Normalized Difference Vegetation Index (NDVI) [142] for vegetation and Normalized
Difference Water Index (NDWI) [182] for water. These values are easy to interpret but
determining the right combination to use for a given dataset is challenging: it requires expert
knowledge of the phenomenon (it becomes unfeasible to detect something that we cannot at
least partially characterize using spectral properties) and a systematic feature engineering
effort for each new problem.

As for multimedia images it can be interesting to seek universal features. Color histograms
can be used for multispectral and hyperspectral images in the same way as for RGB images.
The histograms are invariant to rotations, local translationss and scaling. However they are
sensitive to slight radiometric changes due to environment such as illumination changes.
Moreover the value quantization in the histogram can add some robustness to noise but
also severely reduce the digital accuracy of the intensities and therefore make some subtle
differences between spectra disappear. For hyperspectral imaging, two similar materials
can have nearly the same spectral profile with local difference in one or two wavelengths
presenting different absorption peaks. A strong quantization can make these peaks dsappear,
losing the discriminant feature. Other histograms such as HOG [35] also apply to remote
sensing images with the same limitations.

A last group of features frequently used for remote sensing image classification is the
morphological attribute profile group. Benediktsson, Pesaresi, and Árnason [6] introduced
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these features, obtained by an iterative combination of morphological operations (dilation
and erosion). Not only these image features give information about the spatial structures to
which a pixel belong, they do so at multiple scales thanks to attribute profiles [36].

It is often practical to combine several features at multiple scales or on multiple sensors to
obtain a richer information. Once the features have been generated many statistical models
can used for classification or regression.

Usual statistical models

The feature vectors extracted from all the data samples can be fed to a classifier, a statistical
decision model that can come in various forms. This subsection only deals with shallow
classifiers that do not perform representation learning, excluding the deep neural network
which will be discussed at a later point.

Literature on machine learning for remote sensing has long been supportive of decision
trees – more specifically random forests [17] – and SVM [13, 31].

Deicision trees [18] are a group of statistical model that represent variables as inside
nodes, each edge corresponding to a set of possible values for the variable. The set of edges
leaving from a given node cover all its possibles values. Choosing an edge depends on
mutually exclusive tests: the first one covers the case a < 0, the second one 0 < a < 0.1, etc.
The tree is optimized during the learning phase using a recursive splitting, dividing the
dataset based on its first feature, then its second, its third and so on, until adding a new
variable does not improve the accuracy anymore (or when all subsets converge to the same
results).

While it is possible to use one decision tree, most of the time they are ensembled in
so-called random forests [17]. A Random Forest (RF) is actually an ensemble of decision
trees optimized on various random subsets of the input features. Each tree computes its own
prediction independently from the others and the forest prediction is the class that received
the most votes (majority rule). Learning an ensemble of trees produces a classifier with a
smaller variance than every single decision trees. One significant strength of decision trees is
that they can be linearized as decision rules easy to understand: the path taken by a sample
in the tree is determined by explicit tests on its features (for example, this pixel has been
predicted this way because the height was less than 5 m and the red intensity greater than
128)11. Random forests have been very popular in semantic mapping of remote sensing data
for various applications, ranging from land cover prediction using Landsat images [127] to
weather prediction [88]. Ensemble of decision trees can also be generated using the gradient
boosting principle that leverages many weak classifiers and combine them to produce one
strong classifier [50]. The gradient boosted trees are somewhat less common in remote
sensing but can occasionally be found in the literature [89].

The SVM [13, 31] are classifiers that work by dividing the feature space so that the distance
between the class-border and the nearest sample (the margin) is as large as possible. The
border is actually an hyperplane in the input feature space (linear kernel) or an hyperplane
of a space with a large dimensionality (possibly infinite) when using the kernel trick [13].

If the dimension of input data is large, computing exact hyperplanes that maximize the
margin can untractable. In this case there are two workarounds: reducing the data dimension
using dimension reduction techniques or using approximate optimization algorithms such
as the online gradient descent for SVM training [15].

SVMs have found many applications in remote sensing and are especially popular for
land cover classification based on multispectral [128] and hyperspectral images [113].

Finally the multilayer perceptron also found itself used as a classifier of remote sensing
data for multispectral [7] and hyperspectral [57] image processing.

11Although it is harder to interpret random forests with hundreds or thousands of trees.
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Spectral and spatial features

As we have seen, expert features in remote sensing generally focus on radiometric information.
For a long time most classification approaches operated pixel-wise, i.e. the classifiers only
predicted one pixel at a time. Even when the spatial neighbourhood was considered, the
inferred class was valid only the center pixel.

This approach ensures that the predicted map has the highest possible resolution – the
same as the input data – but it prevents the classifer from learning spatial relationships
between objects. Since technology has continuously improved the sensor sensitivity and
resolution, object of interests now cover several pixels and geometrical features such as
connectivity and convexity can be observed. A given pixel submitted to extreme noise
(either due to a sensor deficiency or an odd material) would be wrongly classified if taken
in isolation. However a model that learns from spatial features could work around this
mistake by taking into account that neighbouring pixels probably have the same class (i.e. an
homogeneity criterion). Pixel-wise classification often results in noisy salt-and-pepper maps
which requires post-processing using graphical models such as CRF.

In comparison patch-wise classification approaches have been designed to leverage
the spatial context around objects. These techniques slide a window over the image to
classify the center pixel of each square area. Patch-wise classification became increasingly
popular thanks to the new deep CNN from the state of the art. Originally the remote
sensing community relied on a mix of spatial and spectral expert features [46], which were
superseded by the spectral-spatial representations automatically learnt by deep networks.
The latter significantly outperformed the former and became the de facto new state of the
art for many tasks [122, 24]. Several works have investigated the use of CNN applied using
a sliding window for various applications, such as building detection [171] and land cover
classification [129].

Yet these methods rapidly reach a limit as the number of pixels exhibits a quadratic
growth with respect to the image size. One prediction per pixel does not scale when dealing
with the high resolution (HR), very high resolution (VHR) and extremely high resolution
(EHR) data that the new satellites deliver. It would require millions – even billions – of
predictions to process one image. The only acceptable solution is to reduce the number of
inferences needed using an efficient grouping scheme: one prediction should cover an area
of several pixels.

This motivated the introduction of region-based classification methods. The principle is
that similar pixels can be grouped in homogeneous regions that share the same class. The
similarity criterion used to merge pixels depends on both their position and their values. The
classifier can then perform a unique prediction for all pixels that belong to the same region,
based on the hypothesis that neighbouring spectrally similar pixels share the same semantics
(i.e. the same label). In that case feature extraction can be done on the whole region once.
As an example, an image of shape 1500× 1500 can be reasonably in 20 000 regions, which
would entail only 20 000 predictions to map it entirely instead of 2 250 000 for pixel-wise
techniques.

Many segmentation algorithms have been introduced both for remote sensing and natural
images. These algorithms divide the set of pixels in an unsupervised fashion. Once the
segmentation has been done, one can generate the features for every region and then train a
classifier using the same pipeline as usual.

Region-based classification significantly reduces the computational burden of semantic
mapping. Increasing the sensor spatial resolution does not alter the regions’ homogeneity
which can be kept as is. Therefore increasing the size of the image does not entail a quadratic
growth of the number of regions. Since the seminal work of Mnih [116] using CNNs for
patch-based road and building extraction in aerial images, these approaches have been
successfully transfered on many VHR datasets [86, 172]. Note that mapping an image by a
sliding window or even pixel-wise using the pixel grid are particular cases of the general
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region-based classification strategy.
The image presegmentation is also very interesting when using morphological profiles

since these operations are costly. A common variant is to first build a multiscale tree-like
hierarchical segmentation of the image. The morphological operator can then be interpreted
as tree pruning which are fast and efficient. Many approaches for tree-based segmentation
exist [14] that can be used to compute attribute profiles, i.e. multi-scale features that extend
the properties of morphological features. These methods have been the state of the art for
semantic mapping for some time [134] and dedicated statistical models have been designed
especially to leverage morphological attribute profiles [33].

Concurrently to this thesis, approaches based on fully convolutional networks (FCN)
for semantic segmentation of remote sensing have become more and more popular. Indeed
FCNs perform a dense inference on the whole image in only one forward pass. This solves
the problem of the high computional cost of the patch-based classification, drastically
reducing the computation time without unsupervised presegmentation. The first published
paper using an FCN on optical aerial images appear in 2015 [126, 108, 153], based on the
standard architectures from Long, Shelhamer, and Darrell [104]. Symetrical autoencoder-like
architectures quickly followed [176, 3] and many derivative works have been proposed, such
as a CRF [103] designed for data fusion or explicit regularization for edge smoothing [111].
Aerial EHR images were a natural starting point, but FCNs have also been applied to satellite
data [51].

New datasets such as the Inria Aerial Image Labeling Dataset constitute an excellent
playground for FCNs to excel. These models trust the first ranks of the leaderboards [71].
Overall deep learning approaches using FCNs are now well-established as the new state of
the art for most remote sensing image processing tasks [101]. As more and more datasets are
published in this area, some of which are detailed in Appendix A, it has never been easier to
train deep models for various applications.
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Et la géographie, c’est exact, m’a beaucoup servi. Je savais reconnaître, du premier
coup d’œil, la Chine de l’Arizona. C’est très utile, si l’on est égaré pendant la nuit.

— Antoine de Saint-Exupéry (Le Petit Prince, 1943)
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Summary:

This chapter presents two semantic segmentation strategies for very high reso-
lution aerial images: region-based classification and fully convolutional net-

works.
Region-based classification is rooted in unsupervised partitioning algorithms

that divide the image in multiple homogeneous areas. A classifier is then applied
on all regions independently based on deep features computed on each patch. We
use pretrained CNN on ImageNet and show that the representation learnt on multi-
media images can successfully be transfered for remote sensing data processing.

Moreover, we identify desirable properties of unsupervised segmentation al-
gorithms that are used for region-based classification. Especially, we empirically
show how undersegmentation impedes both feature extraction and segmentation
and that reducing the region size to alleviate this does not scale on large images. We
therefore introduce fully convolutional networks for remote sensing data to perform
an end-to-end pixelwise feature extraction and classification in one forward pass.

We adapt state of the arts semantic segmentation models from the computer
vision literature to aerial images and experimentally validate that they outperform
significantly usual classification strategies. We also introduce multiscale convolu-
tional layers to learn from various levels of spatial context.
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3.1 Region-based classification of aerial images
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Figure 3.1: Semantic mapping of aerial images.

This chapter deals with semantic mapping of red-green-blue (RGB) or infrared-red-green
(IRRG) three-channels aerial images, either at VHR (50cm) or EHR (10cm). Those images are
acquired with digital cameras similar to consumer-grade ones and therefore present similar
characteristics: high resolution, (pseudo-)RGB color space and well-known sensor. Therefore,
they constitute a natural first step for applying modern computer vision to remote sensing
images.

Our goal is to learn a semantic maps from images, i.e. an associative relationship between
each element of the image and one of the classes of interest (Fig. 3.1). More precisely, given
an image I with dimensions M ×N and a set of labels from 1 to n we wish to map every pixel
Ii,j to a class ki,j ∈ {1, . . . ,n}. To do so we approximate f defined as:

∀(i, j) ∈ {1 . . .M} × {1 . . .N} f (I[i, j]) = ki,j . (3.1)

Contrary to the object recognition problem in which we try to map one or more labels
to the whole image, here we look for a dense classification. Because of spatial regularities
and relationships between neighbouring pixels, a classified image can be seen as groups
of neighbouring pixels all belonging to the same class. Generating such a map is called
“semantic segmentation” in the literature.

To build a statistical model that approximates f , we can split the function in two steps.
The first step, named feature extraction, projects the raw information into a predefined
learning space. The second step consists in dividing the representation space in disjoint
subspaces, i.e. to perform a classification.

Formally, let E denote the input space, R the representation space and {y1, . . . , yk} the set
of labels. f is the composotion of two functions:

f = c ◦ p (3.2)

where p is a projection from E →R and c :R→ {y1, . . . yk} such as:

∀x ∈ E a set of pixels, f (x) = c(p(x)) = y ∈ {y1, . . . , yk} . (3.3)

The choice of the representation space (and the projection p) is strongly tied to the choice
of the classifier. For example, a linear SVM divide the representation space using hyperplanes
that maximise the margin between different classses. Therefore it is preferable that the image
of the input space E by p is linearily separable in R to match this assumption. Starting now,
we will call “features” the elemetns of R and “feature extractor” the projection p.
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Chapter 3 Automated semantic mapping of aerial images

This section details the principle behind region-based classification and the current state
of the art in unsupervised image segmentation, before studying the properties of these
algorithms when applied on aerial images.

3.1.1 Region-based classification

As we have seen in the previous chapter, image classification is at the center of a large body
of works in the literature. Nonetheless let us remind that our interest is focused not on global
matching between images and labels, but on dense pixel-wise mapping. As a first approach,
it is feasible to deal indepently with image segmentation on the one hand and semantization
on the other hand. This dichotomy allows us to split the image in many regions that will be
independently classified: this process is called region-based classification. First, we apply
a segmentation algorithm on the image and then a classifier assigns a label to each of the
sub-region.

Definition 6. Region-based classification of an image I consists in finding a partition P = P1, . . . ,Pn
such as:

n⋃
i=1

Pi = I (segmentation)

and a classification function C such as:

C(Pi) = ki (classification)

where ki is the label assigned to the ithregion1.

Many algorithms have been introduced for remote sensing image segmentation, for exam-
ple using attribute profiles based on hierarchical tree-like segmentations [9], superpixel seg-
mentations combined with visual bag-of-words techniques [33] or deep neural networks [22].
To begin, we will review unsupervised segmentation algorithms and study how choosing one
over another impacts the classifier’s accuracy in a region-based classification pipeline.

3.1.2 Image segmentation algorithms

There are many unsupervised image segmentation algorithms that can be applied to grayscale
and color images in various color spaces such as RGB, hue-saturation-intensity or L*a*b* CIE
1976 (CIELAB).

A first group of segmentation algorithms treats the 2D image as graph: pixels are nodes
and vertices are neighbourhood relationships such as pixel similarity. Building the regions
is done by merging nodes based on the value of their vertices, often by propagating some
constraint. This principles is at the core of the Felzenszwalb-Huttenlocher (FH) [19] algorithm
that divides the image by computing the minimal spanning tree on its graph. Similarly,
Normalized Cuts [56], Entropy Rate Superpixel (ERS) [38] and the algorithm from Grady [24]
respectively use graph partition, entropy minimization through random walk and diffusion
equations to segment the image.

Another family – which is more and more popular – finds its roots in iterative clustering
algorithms. This principle grew into deux groups of “superpixel” segmentation algorithms.
The first one originates from the Simple Linear Iterative Clustering (SLIC) algorithm [1].
SLIC projects every pixel in a 5-dimensional space (CIELAB color and (x,y) coordinates)
and applies a variant of the k-means iterative clustering algorithm. SLIC initializes as
many centers as specified by the user on a regular grid. These centers iteratively absorb
their neighbours along the regions’ borders. Several variants have been published such
as the faster Preemptive SLIC [47] or Linear Spectral Clustering (LSC) [34] which includes

1This label is generally the most representend one inside the region.
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Original image SLIC Quickshift

MRS algorithm FH Watershed

Figure 3.2: Natural image segmentation. To capture finer details, some algorithms rely on irregular
shapes. Image credits: Tom Frydenlund, CC0.

global constraints in addition to the local iterative update and the Superpixels with Contour
Adherence using Linear Path (SCALP) algorithm [21]. SCALP forbids the generation of
irregularly-shaped regions by scanning all pixels between the superpixel center and the one
to be added. Moreover SCALP uses the result of an edge detection as an auxiliary input to
strenghten its stickiness to object edges. The second group of superpixel-based methods
derivates from the k-medoids algorithm. This works by projecting pixels into a non-euclidean
space, generally RGB-(x,y) which has a dimensionality of 5, and performing a clustering
by finding the main local mode in each neighbourhood, i.e. the medoid. This approach is
used in Mean Shift [17] and Quickshift [63]. Other algorithms also use iterative clustering
approaches. The Superpixels Extracted via Energy-Driven Sampling (SEEDS) algorithm [61]
defines blocks of pixels that can trade elements along their border to maximize an energy
function computed on color histograms. SEEDS uses a hill-climbing optimization algorithm
to make the blocks converge to a stable configuration. Finally, some segmentation algorithms
use level sets to converge, such as Chan-Vese algorithm [14] which is based on active contours
or TurboPixel [32] which works on the local gradients and curvature.

For grayscale images, the morphological watershed algorithm [8] is particularly popular.
Watershed considers an image as topological elevation map in which it simulates a rise of the
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Chapter 3 Automated semantic mapping of aerial images

water level. At first, water flows from a specified number of sources positioned on markers
which can be manually inserted or automatically generated2. The water fills the topological
map as it rises. When two sources meet, watershed erects a virtual dam along the border,
which defines one of the segmentation’s edges. The algorithm stops when the whole image
has been flooded. Watershed is sensitive to the markers’ positions and choosing them is
critical to obtain clean segmentation with smooth regions. A compact variant has been
introduced [47] to make watershed robust to poor initialization by making it similar to SLIC.
The morphological approach can also be applied to active contours, for example in a variant
of Chan-Vese’s algorithm [14] with morphological active contours [45].

Finally, algorithms specific to remote sensing data have been designed for radar and
multispectral images. These algorithms use multiple scales of spatial context to perform
object-oriented image processing. Multi-Resolution Segmentation (MRS) [5] is an example
of a common remote sensing image segmentation algorithm, thanks to its implementation
in the eCognition©software. MRS tries to detect salient objects and grows regions using a
heuristic spectral homogeneity criterion. The segmentation is computed at multiple scale and
an ad hoc criterion is applied to merge some of the smaller areas. Another popular remote
sensing image segmentation algorithm, Hierarchial Segmentation (HSeg) [60] is a hierchical
tree-like multi-scale segmentation algorithm. Regions from the larger scales are subdivided
in smaller zones recursively. HSeg uses a region-growing strategy in which neighbouring
pixels are fused if they do not meet a specific dissimilarity criterion. Close regions can be
merged if they seem homogeneous in order to reduce the scale of the segmentation.

3.1.3 Choosing a segmentation algorithm

As many segmentation algorithms exist, we need to study if and how choosing one over
another might impact our statistical model. There are two main points to evaluate: what
preprocessing is required to segment our images and which segmentation best preserves the
spatial properties of the image?

Image preprocessing

Most segmentation algorithms apply a light gaussian blur to the image to smooth borders
and reduce noise, which eases the segmentation. On aerial images, such a gaussian blur does
not harm the segmentation and can of course be dropped for classification.

In many cases the actual segmentation is done in the CIELAB color space. CIELAB has
been designed to mimick human vision and the response of the human eye to color variations,
which is logarithmic and not linear. However this becomes dubious when working on remote
sensing images that are not originally RGB, but contains infrared for example. In practice
this conversion does not seem harmful, yet those algorithms will not be straightforwardly
extensible to multispectral images that one often encounters in remote sensing. Overall, only
MRS and HSeg have been designed with such data in mind.

Region shape and size

Several benchmarks have been performed [46, 2, 58] to understand strengths and weak-
nesses of the main segmentation algorithms. Fig. 3.2 illustrates some of the more common
segmentation algorithms.

The main source of variations between different segmentations stems from the regions’
shapes. Geometrical properties can greatly vary between two algorithms. For example, the FH
segmentation generates very heterogeneous regions in sizes and shapes since it walks freely
on the graph. It can merge similar pixels that are far apart as well as producing small regions
comprised of a handful of pixels, without any parameter to control this. On the contrary,

2For example at the local minima of the image gradients.
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superpixel segmentations and more specifically those which are based on SLIC produce
visually homogeneous regions. These algorithms take as an input a compacity parameter
which controls the regions’ stickyness to the underlying grid. Superpixels produced by SLIC
are easily constrained in size while keeping a freedom of shape. Quickshift exhibits a similar
behaviour although it often produces regions more irregular than its counterparts from SLIC.
The compact watershed segmentation behaves nearly exactly as superpixels techniques and
is a clear improvement on the original watershed since it does not need markers anymore.
This first-order analysis is in line with the existing literature [46, 2]. Overall, most superpixel
flavors exhibit similar properties and be swapped without care [58].

Since our work concentrates on remote sensing image classification, we have to investigate
how these algorithms deal with aerial images acquired from above. Some segmentation
examples are given in Fig. 3.3. The MRS is very effective on aerial and satellite images.
Indeed, although visually chaotic, the regions stick very close to actual objects’ edges up
to the smallest details, which is often where superpixel approaches tend to fail. This is
especially interesting since objects in remote sensing data can be quite small, as cars in the
example.

To go further, we will then restrict our anlysis to segmentation algorithms designed
for remote sensing (HSeg et MRS) and two classical segmentation algorithms for natural
images: Quickshift et SLIC. Watershed approaches are dismissed since they are actually
close to SLIC [47] and the FH algorithm is removed because of the too high variability of
its regions [46]. Now that we have chosen our segmentation algorithms, we can move on to
feature extraction and region classification.
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Original image SLIC Quickshift

MRS algorithm FH Watershed

Figure 3.3: Aerial image segmentation (from ISPRS Potsdam). Cars are more or less well-segmented
depending on the algorithm.
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3.2 Deep neural networks

3.2.1 Convolutional neural networks as feature extractors

Deep learning’s appeal resides in learning representations [7, 23]. As we saw in Chapter 2,
convolutional neural networks perform a learnt feature extraction thanks to learnable filters
in the first layers. As the network is trained end-to-end, the projection in the representation
space is jointly optimized with the classification loss on the training samples.

By stopping the forward pass in a CNN after the softmax layer, i.e. before the last layer,
we obtain activations that can be interpreted as an internal representation of the data, i.e. a
deep feature vector.

Such features can be used to train usual statistical classifiers, either by retraining (fine-
tuning) the last layer or with shallow models. It has been shown [54] that deep features
computed by deep networks pretrained on ImageNet [18] fed to a linear SVM often led to
state-of-the-art results compared to ad hoc features. Razavian et al. [54] demonstrated this
on many tasks and showed that, despite its simplicity, deep features from the off-the-shelf
pretrained models most of the time outperforms expert features such as HOG and SIFT.
Interestingly, pretrained weights are also often better initializations than random weights
when training new models, even when the two tasks vastly differ [65].

Various publications extended these findings to aerial image classification [51, 42, 30]
with the same results on remote sensing datasets such as UC Merced and Brazilian Coffe.
Marmanis et al. [42] and Penatti, Nogueira, and dos Santos [51] showed that deep features
from ImageNet-pretrained networks significantly outperformed expert remote sensing fea-
tures on aerial and satellite images, a result that Lagrange et al. [30] extended to semantic
segmentation. This is counterintuitive since ImageNet is comprised of everyday images
including dogs, cats, cars, people and landscapes. Yet, the sheer size of the dataset suffice
to learn generic convolutional filters than can be suitable for many domains, even remote
sensing.

Application to semantic cartography

Building upon segmentation and classification techniques previously described, we are able
to design a complete semantic segmentation pipeline for aerial images, illustrated by Fig. 3.4:

1. Divide the image in homogeneous sub-regions using a segmentation algorithm.

2. For each region, extract an image pyramid (32 × 32, 64 × 64 and 128 × 128 patches)
centered its barycenter to include spatial context.

3. Extract features from each patch.

4. Concatenate the features.

The training samples this process produces can be used either to fit the classifier in the
learning phase or for inference during the evaluation. One benefit of the concatenation step
(4) is the ability to inject arbitrary expert or multimodal features [30] to enrich the classifier.

When dealing with features, standard CNNs expect a fixed-sized input due to the presence
of fully connected layers, which determine the output size of the convolutional layers and
de facto the input dimensions. In this case, we resize the small patches to the dimensions
expected by the network, e.g. 228× 228 for AlexNet.

Moreover, deep features tend to exhibit a large dimensionality. As an example, AlexNet’s
last layer computes a vector of size 1000 for each image. Our pipeline will therefore produce
a vector of size 3000 for each region. Fitting an SVM exactly in such a large space takes a
long time, even on modern computers. To alleviate this burden, we use an online stochastic
gradient descent optimization approximation from Bottou [10]. Detailed results are reported
in Section 3.3.3.
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Figure 3.4: Region-based semantic segmentation of an aerial image. Every area of the segmented
image is classified based on deep features from a pretrained convolutional network.

3.2.2 Fully convolutional networks

Region-based classification algorithms suffer from two drawbacks. First, the segmentation
puts an upper bound to the level of detail that can be obtained in the final map. Indeed,
coarse regions after the segmentaton are not refined by the classifier as the whole area
will be labeled with the same class. Enhance the resolution of the semantic map requires
decreasing the size of the segments which means increasing their number, proportionaly
increasing the computation time to process the whole image. In extreme cases, objects can
reach a subpixel size which means that an optimal classifier would operate pixel-wise, on
1 px-regions. However, computation becomes prohibitive on remote sensing images where
the shortest size is easiliy counted in thousands of pixels.

Fully convolutional neural networks are one way to tackle this problem. As detailed
in Chapter 2, Fully Convolutional Networks (FCNs) are neural networks consisting in
convolutional layers designed for dense classification. One forward pass maps every input
pixel to one of the classes of interest.

FCNs have several advantages:

• Prediction for a specific pixel automatically leverage the spatial context as far as the
network’s receptive field allow.

• Input images can now have variable rectangular shapes.

• Dense classification can be done at the same resolution as the input image.

FCNs can be applied on large images in a single pass without pre-segmentation. Deep
feature extraction is automatically performed in a dense fashion and optimized jointly with
the pixel-wise classification. As a result, the internal representations learnt for semantic
segmentation include spectral and color information from the pixel, but also spatial cues
from the network’s field of view.

Application to semantic mapping

Many FCN architectures have been introduced for semantic segmentation. In this work,
we focus on the SegNet model from SegNet Badrinarayanan, Kendall, and Cipolla [6] (cf.
Fig. 3.5) as it is balanced between accuracy and compute load3. SegNet has a symetrical
design using skip connections that replace precisely abstract high-level features at their
geometrically-salient localizations based on lower-level features. Preliminary experiments
with the seminal FCNs from Long, Shelhamer, and Darrell [41] and DeepLab [16] did not
result in significantly better models. Nonetheless, our contributions are not specific to

3This includes both the memory required to run the model and the computation time.
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SegNet can be be applied to any other architecture. To provide a comparison basis with
newer models, we also experiment with the ResNet-34 model from He et al. [27].
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Figure 3.5: Fully convolutional network – SegNet [6].

SegNet is an encoder-decoder architecture built upon the convolutional layers of VGG-
16 [15, 57]. The encoder is a sequence of convolutional layers comprised of a 3× 3 convolution,
BN and a ReLU non-linear activation. Each block contains 2 or 3 of those convolutional
layers and is followed by a max-pooling layer on a 2× 2 window with a stride of 2. The full
architecture is detailed in Fig. 3.5.

The decoder is symetrical to the encoder: it contains the same number of convolutional
blocks and the same number of layers. Dimension reduction through max-pooling is replaced
by unpooling operations that replace the intermediate activation to the indices (“argmax”)
computed during pooling. For example, the first max-pooling layer outputs the maximum
activation mask and transfers them to the last unpooling layer. The before last activations are
replaced to the indices that have been transferred and the rest of the positions are filled with
zeros. These sparse unpooled feature maps are densified by the subsequent convolutional
layers. To remove any ambiguity in the definition of the unpooling operator, it is necessary
that input tensors have even spatial dimensions.

As the encoder is taken from VGG-16 we can initialize it using its pretrained counterpart
on ImageNet [18]. The decoder is randomly initialized using He’s policy He et al. [26]. The
network is optimized end-to-end to minimize the empirical classification error on the whole
image, i.e. the average cross-entropy computed for each pixel (i, j) between its label y(i,j)

and the activations z(i,j) normalized by a softmax layer. Let M and N denote the input image
dimensions and k the number of classes, then we search for the weights minimizing:

L(softmax(z), y) = − 1
M ×N

M∑
i=1

N∑
j=1

k∑
p=1

y
(i,j)
p log


exp(z(i,j)

p )
k∑

q=1
exp(z(i,j)

q )

 . (3.4)

Although fully convolutional models do not require fixed-size inputs, processing full
aerial HR tiles is not feasible due to the large memory requirements it would entail. As a
workaround, we process a tile using a sliding window approach.

During training we randomly extract small patches over all available tiles. We apply
random flipping or mirroring as a data augmentation strategy to improve the model’s
generalization capacity.

At test time, we process the high resolution images using a sliding window. As this might
induce side effects on along the edges of the window grid, we use a stride smaller than size of
the window. This generates an overlap for which several predictions will be made for the
same pixel. By averaging these multiple predictions, we can smooth the semantic map and
improve the overall accuracy, albeit at the cost of a slight increase in processing time.
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3.2.3 Multi-scale analysis
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Figure 3.6: Multi-kernel convolutional layer. Replacing the last convolutional layer by a variant with 3
kernels working on several spatial contexts operates the same as averaging 3 models sharing weights.

Multi-scale convolutional layers have been shown useful for object recognition in the
Inception model [59] and at multiple times for semantic segmentation [66], including on
remote sensing data [67]. We suggest to alter the last convolutional layer from SegNet’s
decoder to extract features at various spatial context sizes. More specifically, we apply an
ensemble of 3× 3, 5x5 and 7x7 parallel convolutions instead of the usual single 3× 3 kernel.
In practice, this is the same as creating an ensemble of three models sharing architecture and
weights up to the last layer, as illustrated by Fig. 3.6. Let Xin denote the input activations
from the multi-kernel convolutional layer, Z(s)

p the output feature maps for scale s (s ∈ ~1,S�
with S = 3 and p ∈ ~1,P� with P the number of filters of the before last convolutional layers,

here 64), Z∗q the final activations (q ∈ ~1, k� where k is the number of classes) and W(s)
p,q the

qthconvolution kernel for the pthactivation map at scale s:

Z∗q =
1
S

S∑
s=1

Z(s)
p =

1
S

S∑
s=1

P∑
p=1

W(s)
p,qXp . (3.5)

For a pixel located at (i, j) with an activation z
(s,i,j)
k for class k and scale s, the cross-entropy

after softmax is obtained using the following equation:

L(softmax(z), y) =
k∑

l=1

y
(i,j)
l log


exp

(
1
S

S∑
s=1

z
(s,i,j)
l

)
k∑

l′=1
exp

(
1
S

S∑
s=1

z
(s,i,j)
l′

)
 . (3.6)

Although the network can trained end-to-end, it is more practical to add new kernels
a posteriori. Initially, the network is trained on only one scale. After training, the last
convolution kernels can be replaced by smaller or larger ones on which we perform a fine-
tuning. The kernels can then be added to the parallel convolution.
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This multi-kernel strategy is similar to Inception blocks from Szegedy et al. [59] and
to the multiscale convolution from Liao and Carneiro [35]. Yet, in our case we only alter
the last convolutional layer in flexible way so that it does not require retraining the whole
model. This agregates spatial contexts similarly to dilated convolutions Yu and Koltun [66]
to produce multi-scale features. Working on various sizes of local neighbourhoods allow us
to avoid introducing a costly dilated convolutional kernel or an image pyramid [67]. It is a
straightforward adaptation of an already trained classifier which improves its robustness by
integrating multi-scale features at local level.
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Figure 3.7: Deeply supervised SegNet at three scale.

Multi-scale processing of remote sensing images most often rely on extracting image
pyramids: several contexts at multiple resolutions are used as an input to one or more
classifiers. This subsection introduces an alternative approach which processes only one
image but generates a pyramid of predictions as the FCN’s output, similarly to the DeepLab
model [16]. Each output is a downscaled map predicted at a lower resolution on which it
will be possible to backpropragate the gradients. This has two benefits; first it performs
multi-scale inference which boosts accuracy through ensembling, second it allows a deep
supervision of the networ [31].

In the SegNet architecture,the output pyramid naturally appears in the decoder. Each
the decoder’s pthblock, we add a convolutional layer that performs the dense classification at
resolution 2pM

32 ×
2pN
32 (where M,N are the image I dimensions), as shown in Fig. 3.7. These

maps are interpolated to the full M×N resolution and averaged to produce the final semantic
segmentation. Let Pcomplète denote the full-scale map, Préduited the maps downscaled by a
factor 1 : d and Id the bilinear interpolation with a factor d. The relationship tying these
tensors is:

Pcomplète =
∑

d∈{0,2,4,8}
Id(Préduited ) = P0 + I2(P2) + I4(P4) + I8(P8). (3.7)

During backpropagation, every convolutional block receive two gradients:

• The gradient coming from the backpropagated error at full-scale,
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• The gradient coming from the backpropagated error at small-scale.

Deeper layers learn to refine the maps at the smaller scale which simplify the overall network
optimization [37].

3.3 Model evaluation

Quantitative metrics are required to compare the relative performances of the segmentation
and classification models we introduced. This section details the metrics that we will
subsequently use to benchmark various approaches.

3.3.1 Classification metrics

T−

F+

T+

F−
Precision Recall

Figure 3.8: Distribution of true positives T+, true negatives T−, false positives F+ and false negatives
F− in a binary classification setting with a 2D space.

For a given classifier and a class of interest i, we define T+ as the set of true positives
(samples belonging to class i that were correctly labeled), T− the set of true negatives
(samples beloging to class j , i that were not labeled as i), F+ the set of false positives
(samples belonging to j , i labeled as i) and F− the set of false negatives (samples beloging to
i labeled as j , i). This division is illustrated in Fig. 3.8.

We then define classification metrics for the classifier with respect to the class i:

• Precision is defined as the ratio between true positives and the total number of samples
labeled as i by the classifier:

precision =
T+

T+ + F+ .

• Recall is defined as the ratio between true positives and the total number of samples
actually belonging to i:

recall =
T+

T+ + F−
.

• The F1 score, or Sorensen-Dice coefficient, is defined as the harmonic mean of precision
and recall:

F1 = 2 · precision× recall
precision + recall

,

or, differently written,:

F1 =
2T+

2T+ + F+ + F−
.
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• Accuracy is defined as the ratio between right predictions and the total number of
samples:

exactitude =
T+ + T−

T+ + F+ + T− + F−
.

• L’intersection over union (IoU), or Jaccard’s index, is defined as the ratio between right
predictions and the set of samples beloging to the class i and samples labeled as i:

IsU =
T+

T+ + F+ + F−
.

The F1 score and the IsU are not biased towards the main class in an unbalanced setting,
contrary to the accuracy. For example, a naive classifier always predicting “background”
would be accurate at 95% against a dataset containing 95% background and 5% object.
However, its F1 score would be 0.

Note that although the IsU is similar to the F1 score, it grants a larger weight to true
positives. Yet, both can be used to sort classifier since there is an monotonous relationship
between the two: IsU/F = 1/2 + IsU/2. If model A is better with respect to the IsU than model
B, it will also be the case with respect to the F1 score and conversely.

Seeing that these metrics are defined in a binary setting, we will look for the overall
accuracy and the average intersection over union (or F1 score on all classes) in a multiclass
setting. Additionnal metrics such as Cohen’s Kappa can help estimate agreement between
predictions and the actual label, even taking chance into account:

κ =
P(agreement)− P(change)

1− P(change)

where P(agremment) is the agreement ratio between predictions and actual labels and
P(chance) is the probability of a random agreement.

3.3.2 Segmentation metrics

To begin with, we wish to compare theorical capacities of several presegmentation algorithms.
Indeed if the segmentation merge in the same region two pixels belonging to different classes,
some error will necessarily be injected in the final classication since one region is labeled in
one class only.

We rely on four metrics to benchmark the segmentation algorithms:

• Undersegmentation error (UE), defined as the percentage of pixels belonging to a region
that overlaps two classes. Let S and R denote respectively the generated segmentation
and the actual one, and N the total number of pixels in the image:

UE =
1
N

∑
Ri∈R

∑
Sj∈S/Sj∩Ri,∅

min(
∣∣∣Ri ∩ Sj

∣∣∣ , ∣∣∣Ri\Ri ∩ Sj
∣∣∣)

• Border recall (BR), defined as the statistical recall of pixels at regions’ borders that are
in a 3-neighbourhood of an actual edge:

RB =
T+

T+ + F−

• Average purity (AP), defined as the mean of pixels belonging to the main class of their
local cluster. Let maj the operation that maps a region Si to its majority class:

PM =
1
|S|

∑
Si∈S

|{p ∈ Si et classe(p) = maj(Si)}|
|Si |

• The oracle, defined as the pixel-wise overall accuracy achievable by a perfect classifier
that would map every region to its majority class. This it the upper-bound of the
accuracy that a classifier can achieve using the segmentation.
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(a) IRRG image (b) Ground truth (c) SLIC+AlexNet+SVM (d) SegNet

Figure 3.9: Semantic maps inferred by region-based classification and a FCN. SegNet outputs dense
predictions that are significantly more accurate and detailed that the result of a superpixel prediction
and deep features region-based classification.
Colors: white: roads, blue: buildings, cyan: low vegetation, green: trees, yellow: vehicles, red: clutter.

3.3.3 Region-based classification

We choose to compare several unsupervised segmentation algorithms in a region-based
classification setting on the ISPRS 2D Semantic Labeling Vaihingen dataset. This dataset is a
EHR aerial acquisition of a medium-sized German town using IRRG channels. It has been
labeled for 6 classes. More details regarding the dataset are given in Appendix A.1.1.

We evaluate the five segmentation algorithms commonly used in computer vision and
remote sensing from Section 3.1.2: SLIC, LSC, Quickshift, MRS et HSeg. Each method’s
parameters are tuned to obtain roughly the same number of regions and the best results.
These algorithms are representative from what is generally used in the literature.

Table 3.1: Benchmark of five segmentation algorithms on the ISPRS Vaihingen dataset. Best results
are in bold, second best are in italics.

Algorithm # regions UE (%) BR (%) AP (%) Oracle (%)

SLIC '20 000 10.21 84.07 75.10 89.91
LSC '22 800 11.37 91.13 71.54 85.83

Quickshift '21 000 11.66 88.34 72.90 83.61

MRS '23 500 13.12 95.71 79.08 91.68
HSeg '21 000 11.39 94.83 78.66 85.25

Table 3.2: Semantic segmentation metrics on the ISPRS Vaihingen validation set. Best results are in
bold, second best are in italics.

Algorithm # regions Accuracy (%) F1 score (cars) κ Oracle (%)

SLIC '20 000 82.20 0.54 0.76 89.91
LSC '22 800 82.45 0.58 0.76 85.53

Quickshift '21 000 82.05 0.52 0.75 83.61

MRS '23 500 80.53 0.56 0.73 91.68
HSeg '21 000 79.56 0.54 0.72 85.25

Sliding window '23 800 81.22 0.53 0.74 92.56

We apply these segmentation algorithms on all tiles from the ISPRS Vaihingen dataset. We
use the authors’ implementation for LSC [34], the implementation from Guyet, Malinowski,
and Benyounès [25] for MRS (adapted from the TerraLib [13] library) and the implementa-
tions from scikit-image [62] for SLIC and Quickshift. Results are reported in Table 3.1.
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Best results for pure segmentation metrics are obtained by the remote sensing image
segmentation algorithms. MRS and HSeg exhibit high border rappel and average purity,
which indicates that region edges are close to the actual semantic borders from the ground
truth. This is unsurprising since the similarity criterion used by both segmentations have
been tuned for remote sensing data. However this segmentation comes at a price: regions are
irregular which increases the undersegmentation error. In comparison, superpixel algorithms
slightly underperform since their regions are more rigidly constrained, which results in a
lower average purity and lower border recall. Yet, the multiplication of smaller regions
uniformly distributed in the image decreases the undersegmentation error. Overall, the best
theorical classification accuracy (oracle) vary from 83% to 91%. MRS and SLIC seem to be
ahead of the pack based on this metric.

Region-based classification results are reported in Table 3.2. The AlexNet CNN for feature
extraction is implemented using the Caffe deep learning library [28]. We use a linear SVM as
a classifier, optimized by gradient descent as per the implementation from scikit-learn [50].
As the table shows, sorting by overall accuracy does not give the same ranking as the oracle;
raw segmentation metrics do not suffice to compare segmentation algorithms for feature
extraction.

Indeed, high classification results indicate that superpixel segmentations should be
preferred. The classifier benefits from a stronger geometric regularity due to high compacity
and strong convexity. When we extract the patch around a region, most pixels at the center
of the image are relevant to this specific region. This means that the CNN will infer a
richer feature vector. On the contrary, irregular segmentations are harder to integrate in
this pipeline, since rectangular patches rarely overlap well with the regions. Discriminating
between non-normalized samples becomes harder for the classifier, as shown in Fig. 3.3. In
practice, these segmentations do not improve the overall accuracy compared to a simple
sliding window with a fixed computational cost. An example of semantic map obtained
by SLIC and deep features is given in Fig. 3.9. Large areas such as roads, buildings and
vegetation are well-segmented, although borders are blurry and performance on vehicles is
subpar.

One way to improve the accuracy when using MRS is to increase its compacity parameter,
which results in regions similar to superpixels. Accuracy becomes on-par with SLIC altough
the number of regions doubles: MRS needs twice as more segments than SLIC to reach the
same accuracy. This impacts directly the computation since there are twice as many regions
to process. Finally, we stress that segmentating small objects can be challenging and is
sensitive to the choice of the presegmentation. F1 score on cars can be significantly improved
by using a suitable algorithm such as LSC.

3.3.4 Pixel-wise classification using fully convolutional networks

As we have seen, the unsupervised segmentation pre-processing limits the overall accuracy
achievable in a region-based classification setting. Not only does an imperfect segmentation
introduce errors that even the oracle can not recover, the regions shapes and sizes is rarely
suited for deep feature extraction. Investigating FCNs that can learn both segmentation and
classification in an end-to-end fashion is then quite promising.

We train SegNet and ResNet-34 on the ISPRS Vaihingen and ISPRS Potsdam datasets.
Each tile is processed using a 128× 128 sliding window with a variabel stride. Both models
are trained during 50 000 iterations with a batch size of 10. The initial learning rate is set
at 0.1 and divided by 10 after 350 000 and 450 000 iterations. The neural networks are
implemented using the Caffe [28] and PyTorch [52] libraries.

At first, we validate our approach only on the tiles for which the ground truth is publicly
available that we split in a training set and a validation set. To compare our methods with the
state of the art, we then train on the whole dataset (train + validation) with the same hyper-
parameters and we submit our results on the private test set to the ISPRS evaluation server,
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which keeps the test labels hidden. As the Fig. 3.9 showed, dense pixel-wise predictions
produce visually promising results.

Sliding window and overlap

Table 3.3: Semantic segmentation results on the ISPRS Vaihingen validation set with various sliding
window strides.

Network/stride (px) 128 64 32

SegNet IRRG 87.8% 88.3% 88.8%
SegNet multi-kernel 88.2% 88.6% 89.1%

The use of a sliding window during inference forces to study how to deal with borders.
Indeed if the stride of the sliding window is equal the window’s size discontinuities along
the edges can appear which will decrease the overall accuracy and be visually unpleasing. By
reducing the stride, we can allow a partial overlap between two consecutive windows, i.e.
that pixels along the borders will be observed twice or more. This increases the inference
time but generally improves the overall accuracy as reported in Table 3.3. Dividing the stride
by 2 multiply by 4 the windows to process. However averaging multiples predictions on the
same area corrects classification artifacts along the edges where spatial context is missing
(and filled by padding). Experiments show that a stride of 32 px (75% overlap) remains fast
enough for offline processing and significantly boosts the overall accuracy (+1%). A full tile
is processed in 4 minutes on a NVIDIA Tesla K20c with a stride of 32 px and less than 20 s
with a stride of 128 px. We will the former parameters for the rest of this manuscript.

Overall, SegNet classifies correctly more than 87% of the pixels on the validation set. In
comparison not one of the region-based classification techniques investigated in the previous
section went further than 83%. Moreover SegNet overperforms the oracles for the HSeg, LSC
and Quickshift segmentations. This proves that fully convolutional networks are definitely
relevant for semantic segmentation. As they are trained on dense pixel-wise segmentation,
SegNet models learn to jointly extract features and perform classification by taking the
spatial context into account with no resolution loss.

Transfer learning

Table 3.4: Various initialization results on the ISPRS Vaihingen dataset.

Initialization Random VGG-16 (ImageNet)

Encoder variability αe
αd

1 1 0.5 0.1 0

Accuracy 87.0% 87.2% 87.8% 86.9% 86.5%

Pretraining a deep network on a generic dataset is a commonly used technique to improve
its generalization capacity. ImageNet is often used to pretrain networks for many visual
tasks, including in remote sensing [51]. Nonetheless one could argue that features learnt on
cats and dogs from ImageNet might not transfer very well for buildings and trees seen from
above and that it is necessary to retrain the convolutional filters to learn the specificities
of the data. We investigate these claims by training several SegNet models using various
strategies, especially various learning rates for the encoder (αe) compared to the decoder
(αd):

• same learning rate : αd = αe,
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• reduced encoder variability: αd = 2 ·αe,

• low encoder variability: αd = 10 ·αe,

• frozen encoder (no gradient backpropagation): αe = 0.

We compare the results of these networks with a reference baseline obtained by a random
initialization [26], i.e. SegNet trained from scratch without pretraining or transfer learning.

As reported in Table 3.4, the best accuracy is obtained with an encoder initialized by the
pretrained ImageNet weights and optimized with a small learning rate. This strengthens
the idea that the ideal is between the two paradigms: pretrained weights act as a powerful
initialization but they need to be learnable to leverage specific knowledge. Letting the
convolutional filters loose might on the opposite encourage overfitting and tweaking the
encoder learning rate acte as a regularization. These findings are aligned with the previous
works from Nogueira, Penatti, and dos Santos [48] and the broader conclusions of Yosinski
et al. [65] regarding transfer learning. In the following, we will use the initialization from
the pretrained VGG-16 when possible.

Choosing a model

Table 3.5: Semantic segmentation results on the ISPRS Vaihingen validation set.

Network Roads Buildings Low veg. Trees Cars Accuracy

SegNet 92.2± 2.1 95.6± 0.8 82.6± 4.2 88.1± 2.5 88.2± 0.6 90.2± 1.4

ResNet-34 93.0± 1.7 96.0± 0.6 82.3± 2.6 87.0± 3.7 87.0± 2.0 90.3± 1.0

3-fold cross-validation results on the ISPRS Vaihingen validation set are reported in Ta-
ble 3.5. Switching from SegNet to ResNet-34 gives a slight accuracy improvement of 0.1%
and a more robust model with lower standard deviation. However, ResNet-34 requires
25% more GPU memory compared to SegNet which is not justified by the accuracy boost.
Moreover ResNet-34 underperforms SegNet on small objects (i.e. vehicles) for which SegNet
can leverage the unpooling layers for precise relocation. We assume that deeper ResNet
models such as ResNet-101 could extract richer features than ResNet-34 and VGG-16, yet it
would also involve a lot more computation than SegNet. Therefore we stick to the latter for
most our experiments.

Impact of the multi-scale strategies

IRRG Prediction Prediction
(multi)

Ground truth IRRG Prediction Prediction
(multi)

Ground truth

Figure 3.10: Impact of the multi-kernel convolutional layer on the ISPRS Vaihingen dataset.
Colors: white: roads, blue: buildings, cyan: low vegetation, green: trees, yellow: vehicles, red: clutter.

Multi-kernel convolution As reported in Table 3.3, using a multi-kernel convolution as
the last layer improves the overall accuracy by 0.4%. This improvement comes from a
smoothing of the predicted maps that make salt-and-pepper classification noise disappear.
This phenomenon is illustrated in Fig. 3.10. Brahimi et al. [12] obtained similar improvements
by introducing multi-kernel convolutions in a DenseNet model for semantic segmentation in
an autonomous driving context.
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(a) IRRG image (b) Ground truth

(c) SegNet (d) SegNet multi-scale (3 branches)

Figure 3.11: Impact of the deep multi-scale supervision on the ISPRS Vaihingen dataset. Small objects
and spectrally ambiguous surfaces benefit from the multi-scale combination.
Colors: white: roads, blue: buildings, cyan: low vegetation, green: trees, yellow: vehicles, red: clutter.

Deep supervision Table 3.6 show the small positive effect of the deep multi-scale super-
vision on SegNet and the associated metrics with a computational overhead nearly absent.
As expected, large structures benefit the most from the downscaled predictions while cars –
the smallest objects from the dataset – are harder to detect at lower resolution. Moreover,
the absence of structure in vegetation seems to confuse the boundary between trees and low
vegetation at the lower scales. Adding more branches after 3 only marginaly improve the
model performances. This hints that deep supervision has a limited role compared to the
multi-scale effect.

Despite the relatively low quantitative improvement, visual inspection of the predicted
maps show a significant qualitative improvement. Multi-scale predictions from the Fig. 3.11
exhibit a lower noise and are generally smoother than the usual SegNet. This simplifies the
maps post-processing, either their interpretation by an expert or an automated vectorization.
These results are coherent with the later findings of Jiang et al. [29] for semantic segmentation
of Red-Green-Blue + Depth (RGB-D) images.

75



3.3. Model evaluation

Table 3.6: Semantic segmentation results of the multi-scale approach on the ISPRS Vaihingen valida-
tion set.

# branches Roads Buildings Low veg. Trees Cars Accuracy

No branch 92.2 95.5 82.6 88.1 88.2 90.2± 1.4

1 branch 92.4 95.7 82.3 87.9 88.5 90.3± 1.5

2 branches 92.5 95.8 82.4 87.8 87.6 90.3± 1.4

3 branches 92.7 95.8 82.6 88.1 88.1 90.5± 1.5

Finally, this study showed that intermediate feature maps from the decoder are nearly
as accurate as the full scale final predictions. For example, the map computed by the 2nd

convolutional block, i.e. with a downscale factor of 8, is only 0.5% less accurate than the full
resolution one. The main differences are due to the “vehicles” class, which is understandable
since cars cover approximately 30 px at 9 cm/px, i.e. 3-4 px at 1 : 8 resolution. Yet it seems
that for larger classes of interest, it is feasible to keep the accuracy nearly the same while
dropping the number of parameters and the computation time of SegNet by 30% only by
stopping the inference earlier.

Final results

(a) IRRG image (b) RF + CRF [53] (c) “DLR” (FCN) [43] (d) SegNet++

Figure 3.12: Various segmentations on a sample from the ISPRS Vaihingen test set.
Colors: white: roads, blue: buildings, cyan: low vegetation, green: trees, yellow: vehicles, red: clutter.

IRRG image Ground truth Prediction

(a) Predicted maps are, on occasion, more accurate than
the ground truth.

IRRG image Ground truth Prediction

(b) SegNet might overfit on geometrical deformations
due to orthorectification errors.

Figure 3.13: Edge cases of disagreements between SegNet and the ground truth.
Colors: white: roads, blue: buildings, cyan: low vegetation, green: trees, yellow: vehicles, red: clutter.

Our best model improves the state of the art on the ISPRS Vaihingen dataset (cf. Table 3.7)
4. Fig. 3.12 gives a qualitative comparison between various methods. Metrics are computed
after a 3-pixel erosion along the borders to take uncertainties during the labeling process
into account. At the time of our submission, the best published method used a combination
of a FCN and expert features, while ours does not rely on expert knowledge. The previous

4http://www2.isprs.org/commissions/comm2/wg4/vaihingen-2d-semantic-labeling-contest.html
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Table 3.7: Results from the ISPRS 2D Semantic Labeling Challenge Vaihingen (chronological order).

Method Roads Buildings Low veg. Trees Cars Accuracy

Stair Vision Library
(“SVL_3”) [20]

86.6 91.0 77.0 85.0 55.6 84.8

RF + CRF (“HUST”) [53] 86.9 92.0 78.3 86.9 29.0 85.9
Ensemble de CNN

(“ONE_5”) [11]
87.8 92.0 77.8 86.2 50.7 85.9

FCN (“UZ_1”) [64] 89.2 92.5 81.6 86.9 57.3 87.3
FCN (“UOA”) [36] 89.8 92.1 80.4 88.2 82.0 87.6

CNN + nDSM + RF + CRF
(“ADL_3”) [49]

89.5 93.2 82.3 88.2 63.3 88.0

FCN (“DLR_2”) [43] 90.3 92.3 82.5 89.5 76.3 88.5
FCN + RF + CRF (“DST_2”) [55] 90.5 93.7 83.4 89.2 72.6 89.1

SegNet++ (multi-kernel) [4] 91.5 94.3 82.7 89.3 85.7 89.4

FCN + CRF + edges +
corrected nDSM (“DLR_9”) [44]

92.4 95.2 83.9 89.9 81.2 90.3

ResNet-101 (“CASIA_2”) [40] 93.2 96.0 84.7 89.9 86.7 91.1

Table 3.8: Results from the ISPRS 2D Semantic Labeling Challenge Potsdam (chronological order).

Method Roads Buildings Low veg. Trees Cars Accuracy

SVL [20] 83.5 91.7 72.2 63.2 62.2 77.8
FCN [55] 92.5 96.4 86.7 88.0 94.7 90.3

FCN + CRF + expert features [39] 91.2 94.6 85.1 85.1 92.8 88.4
FCN + CRF [64] 89.3 95.4 81.8 80.5 86.5 85.8

SegNet (IRRG) 92.4 95.8 86.7 87.4 95.1 90.0

ResNet-101 [40] 93.3 97.0 87.7 88.4 96.2 91.1

best model using only a FCN (“DLR_1”) reaches 88.4% accuracy, which we surpass by 1%.
Previous methods based on CNNs obtain 85.9% (“ONE_5”[11]) and 86.1% (“ADL_1”[49]).
Our approach obtains better results without relying on expert features or post-processing
such as CRF.

On the ISPRS Potsdam dataset (cf. Table 3.8)5, our approach is competitive with the state
of the art at the time of our submission. Especially we improve the best results for models
based on the optical data only by 0.3% compared to a standard FCN Sherrah [55] and by 4.2%
with respect to the FCN from Volpi and Tuia [64]. An example image is given in Fig. 3.14.

It is interesting to see that some models reach accuracies sufficiently high to saturate
on errors that can be attributed to uncertainties in the labeling process. In Fig. 3.13a, we
give an example where the ground truth coarsely circles the tree while the model sticks
very closely to its actual edges. Moreover the orthorectification pre-processing of the image
mosaic introduces some geometrical distorsions which are not taken into account – with
reason – in the ground truth. Yet the model still picks up the deformation, which generates a
disagreement between spectral values and labels as shown in Fig. 3.13b. This shows that it
becomes harder and harder to significantly improve the results on these datasets since FCNs
are close from what could be reasonably expected by the challenges’ organizers. For this
reason, the competition and the evaluation server have been closed in July, 2018.

To conclude, we showed that FCNs are particularly effective for semantic segmentation

5http://www2.isprs.org/commissions/comm2/wg4/potsdam-2d-semantic-labeling.html
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of aerial images. Specifically, we improved the state of the art on the ISPRS datasets using
the SegNet fully convolutional network which outperformed significantly previous region-
based classification approaches. We introduced several guidelines to initialize and pretrain
such networks and to deal with large images using sliding windows. We proposed two
segmentation techniques to learn from multiple scales and multiple contexts to boost further
the maps’ accuracies. However these achievements still are limited to aerial images comprised
of 3 channels, either IRRG or RGB at very high resolution. The next chapter will therefore
look into extending these results on other sensors commonly deployed for Earth Observation.

The works presented in this chapter were the topic of two conference publications:

• Nicolas Audebert, Bertrand Le Saux, and Sébastien Lefèvre. “How Useful Is
Region-Based Classification of Remote Sensing Images in a Deep Learning Frame-
work?” In: 2016 IEEE International Geoscience and Remote Sensing Symposium
(IGARSS). July 2016, pp. 5091–5094. doi: 10.1109/IGARSS.2016.7730327

• Nicolas Audebert, Bertrand Le Saux, and Sébastien Lefèvre. “Semantic Segmen-
tation of Earth Observation Data Using Multimodal and Multi-Scale Deep Net-
works”. In: Computer Vision – ACCV 2016. Springer, Cham, Nov. 20, 2016,
pp. 180–196. doi: 10.1007/978-3-319-54181-5_12
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RGB image Ground truth

SegNet prediction

Figure 3.14: Semantic map predicted by SegNet on tile 3_11 from the ISPRS Potsdam dataset.
Colors: white: roads, blue: buildings, cyan: low vegetation, green: trees, yellow: vehicles, red: clutter.
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I suppose it is tempting, if the only tool you have is a hammer, to treat everything as if
it were a nail.

— Abraham Maslow
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Summary:

Multispectral images are very common in remote sensing, yet their large num-
ber of channels prevents us from simply copy/pasting FCN architecture

pretrained on RGB data. This chapter shows how to extend the state of the art
segmentation results obtained on color images to multispectral acquisitions. We
will start with aerial infrared-red-green-blue (IRRGB) images and move on to mul-
tispectral Sentinel-2 data, for which tuned FCN architectures can benefit from the
spectral information outside the visible domain.

We will then study the extreme case of hyperspectral imagery, for which the
very high number of spectral frequencies to learn from can be a problem. We will
dedicate a section to review the state of the art in deep learning for hyperspectral
image classification, which will show that 3D convolutional models can significantly
improve the model accuracy on the hypercube despite the small size of the datasets.

Finally we will investigate how to extract semantic information from digital
surface models using convolutional networks. These data contain a very rich height
information that is very useful to discriminate vegetation and man-made objects,
that is otherwise absent from orthorectified images. We will show that while
grayscale FCN can successfully learn from the surface models, they are generally
significantly less accuracte than those trained on color images, which will motivate
the move to multi-modal architectures.
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4.1. Multispectral images

4.1 Multispectral images

In the previous chapter, we have seen that FCNs excelled for semantic segmentation of aerial
images, both using RGB and IRRG channels. However most Earth Observation satellites, no
matter if instutional (Landsat, SPOT. . . ) or private (IKONOS, WorldView. . . ), are equipped
with multispectral sensors. These instruments can see light information invisible to the
human eye but that we wish to use for automatic cartography.

4.1.1 Leveraging the near-infrared channel

The simplest multispectral sensors perform two simultaneous acquisitions – color and in-
frared – that result in a 4-channel IRRGB image. Most Earth Observation satellites embark
this kind of sensor, like the French SPOT and Pléiades constellations. Moreover these satel-
lites often perform a panchromatic acquisition with a significantly better spatial resolution.
This combination is very common since super-resolution techniques – pansharpening – can
then produce multispectral images with the resolution of the panchromatic acquisition. As
a first step we consider the IRRGB images from the ISPRS Potsdam dataset as the simplest
multispectral images, on which we can test some approaches before moving on to satellite
data.

In the Chapter 3, we established that FCNs can indifferently process IRRG or RGB images.
More specifically we were able to transfer the weights of a network pretrained on ImageNet
to IRRG remote sensing data. However this transfer learning is not possible anymore with
IRRGB multispectral images: since the number of channels changed, the network structure
cannot stay the same. We worked around this problem before by dropping the infrared
channels and by dealing only with the remaining 3-channels color image.

Figure 4.1: Intensity distribution for the red, green, blue and infrared channels from the ISPRS
Potsdam dataset.

Before experimenting blindly we take a look at the statistical distrbution of the insen-
tities for each channel in the dataset. The histograms plotted in the Fig. 4.1 reveal that
the distributions can be modelized by gamma laws with similar parameters for the RGB
channels. However the infrared channel deviates significantly from the visible channels,
as showed by the inter-channel correlation maps plotted in Fig. 4.2. The visible channels
are strongly correlated (Pearson coefficient > 0.87). On the contrary, the infrared channel is
only moderately correlated with the other frequencies and the correlation decreases as the
wavelength gap increases. The Pearson coefficient between red and infrared is at 0.80, drops
at 0.69 between green and infrared and finally ata 0.57 between blue and infrared.

We perform a preliminary study on the ISPRS Potsdam dataset based on the same models
and hyperparameters detailed in Chapter 3. In particular we generate several SegNet models,
with and without the initialization scheme from pretrained VGG-16 weights on ImageNet,
for various channel combinations. This allows us to separate the influence of the spectral
bands from the gain provoked by transfer learning. We use tiles 2_10, 2_11, 2_12, 3_10, 3_11,
3_12, 4_10, 4_12, 5_11, 5_12, 6_7, 6_8, 6_9, 6_10, 6_11, 7_9, 7_10 and 7_12 for training
and tiles 4_11, 5_10, 6_12, 7_7, 7_8 and 7_11 for validation. Results of this experiment are
reported in the Table 4.1.

At the first glande, it seems that the 3-channel combination (RGB vs. IRRG) does not
alter the model accuracy. However including the infrared channel by using the 4-channels
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Figure 4.2: Inter-channel correlation maps on the ISPRS Potsdam dataset.

IRRGB image as input to the model significantly decreases the final classification accuracy.
This holds true both with and without pretraining, i.e. when the convolutional filters are
trained from scratch. Models trained on only 2 channels seem to indicate that the infrared
information has an adversarial effect with the blue channel, the IR+B model leading to the
worst accuracy of the tested models. This might point to a relationship between radiometric
correlation between the channels stacked in the input and the overall accuracy. However this
hypothesis is not easy to confirm.

4.1.2 Multispectral images

Most optical sensors embedded in Earth Observation satellites are multispectral. Indeed
the most useful information is not always the one humans can see. For example chlorophyll
reflects light in the near infrared, which makes thie wavelength around 706 nm a very strong

Table 4.1: Benchmark of SegNet variants for semantic segmentation on the ISPRS Potsdam dataset
for several channels combinations. Transfer corresponds to the pretrained weights from ImageNet
initialization.

Channels Transfer Roads Buildings Low veg. Trees Vehicles Clutter Accuracy

IR+B 7 72.79 87.22 57.61 71.74 87.05 13.15 70.69
R+G 7 89.92 95.80 81.49 84.30 95.21 40.42 88.48
IR+R 7 90.75 95.89 82.77 84.97 95.50 42.47 89.25
RGB 7 90.40 96.32 82.38 83.78 95.42 39.97 89.02
IRRG 7 90.83 95.91 83.31 84.26 94.99 43.74 89.29

IRRGB 7 89.67 95.57 82.35 83.82 95.17 42.89 88.51
RGB X 92.35 97.62 85.18 87.19 96.11 52.15 91.22
IRRG X 92.51 97.34 85.68 87.54 96.11 50.24 91.28
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feature for vegetation. However this wavelength is outside the visible spectrum. Additionnal
acquisition wavelengths in multispectral sensors help experts identify specific materials that
could not be detected otherwise. Sentinel-2 is equipped to detect coastal aerosols (band 1
at 443 nm), the red edge from chlorophyll (bands 5 to 7 between 705 nm and 783 nm), water
vapour (band 9 at 945 nm) and cirrus clouds (band 10 at 1.375 µm). The design of these
sensors can be considered expert domain knowledge that should not be wasted.

This section therefore studies how FCNs can be sused for semantic segmentation of
satellite multispectral images. To do so we leverage a dataset of Sentinel-2 images along with
land cover labels from the GlobeCover 2009 project [1] agregated by Ben Hamida et al. [7].
The Sentinel-2 images we work with cover a large area at the border of France, Switzerland
and Italy for a time period comprised between May and October 2016. We hypothesize that
the land cover changes that occurred during the 7 years that separate the map and the data
acquisition are scarce relative to the considered geographical area.

A first dataset is built based on images from May to October that do not present any cloud
cover (opaque clouds or cirrus). A second dataset consists in all images, including those
with clouds, but only during summer (June to August). In this second dataset, clouds are
defined as separate semantic class in addition to the land cover ones, based on the Copernicus
cloud mask. Indeed clouds are a major problem for satellite image processing since optical
sensors cannot see through them. Clouds strongly attenuate the light going through them
and detecting clouds is a major challenge that needs to be solved to deal with occlusions that
naturally occur in most of the globe that do not have a desertic climate. Both datasets have
multiple acquisitions on the same area at different times. All Sentinel-2 tiles are interpolated
at a 20 m/px GSD for all bands. The GlobeCover are kept at their initial 300 m/px resolution.
Details for both datasets are summarized in the Tables 4.2 and 4.3 alongside the list of classes.

Table 4.2: Descriptions of the two Sentinel-2 datasets. The first dataset covers a long time period but
excludes images with clouds. The second dataset is restricted to a short time span but includes the
cloud cover. Both datasets contain approximately 150 millions pixels each.

Datasets # images
(time span) training validation # classes

D1, large time period, no clouds
(May–Oct. 2016) 140 54 16

D2, short time period, with clouds
(June–August 2016) 158 39 17

We use a reduced SegNet architecture to perform the semantic segmentation of these
datasets. We cut SegNet’s decoder after the second convolutional block. Indeed the complete
decoder is not useful since we do not aim for 1 : 1 resolution in the final maps. We use the
multi-scale approach from Section 3.2.3 to generate maps at resolution 1 : 8 (160 m/px), 1 : 16
and 1 : 32. This reduces the computation time and the number of parameters to optimize.
The maps are resampled by interpolation at 300 m/px, then averaged and fed to the softmax
classifier. The final prediction is compared to the ground truth during training using the
cross-entropy loss.

We compare two SegNet variants on this task. The first one, named SegNet RGB, only
considers the bands 2, 3 and 4 from the Sentinel-2 data, i.e. the true color images. The
second one, SegNet MSI, is trained using all of the 12 bands as an input1. The remaining
hyperparameters are the same as in the Chapter 3. All networks are optimized until con-
vergence usnig stochastic gradient descent with momentum, at learning rate of 0.001 and a
momentum of 0.9 for 150 000 iterations. RGB and MSI models use respectively a batch size

1Band 8A is excluded in this experiment.
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Table 4.3: List of classes in the D1 and D2 datasets, derived from the GlobeCover 2009 annotations. *
The “clouds” class is added a posteriori using the mask from the Sentinel-2 Copernicus program.

Value Color GlobeCover 2009 name

1 Rainfeld croplands
2 Mosaic Cropland (50-70%) / Vegetation (grassland, shrubland, forest)

(20-50%)
3 Mosaic Vegetation (grassland, shrubland, forest) (50-70%) / Cropland

(20-50%)
4 Closed (>40%) broadleaved deciduous forest (>5m)
5 Closed (>40%) needleleaved evergreen forest (>5m)
6 Open (15-40%) needleleaved deciduous or evergreen forest
7 Closed to open (>15%) mixed broadleaved and needleleaved forest (>5m)
8 Mosaic Forest/Shrubland (50-70%) / Grassland (20-50%)
9 Mosaic Grassland (50-70%) / Forest/Shrubland (20-50%)

10 Closed to open (>15%) shrubland (<5m)
11 Closed to open (>15%) grassland
12 Sparse (>15%) vegetation (woody vegetation, shrubs, grassland)
13 Closed to open (>15%) vegetation (grassland, shrubland, woody

vegetation) on regularly flooded or waterlogged soil - Fresh, brackish or
saline water

14 Artificial surfaces and associated areas (urban areas >50%)
15 Bare areas
16 Water bodies
17 Clouds*

of 20 and 10, both occupying about 6 Gb of GPU memory. Training takes about 18 hours on
a NVIDIA Titan X (Pascal) GPU using our PyTorch [47] implementation.

The model trained on 12 bands reaches 66.5% accuracy on the D1 dataset (no cloud)
and 86.4% accuracy on D2 (with clouds). The large gap between the two datasets is due to
two elements. On the one hand adding a “clouds” class increases the overall accuracy since
clouds are easy to detect and plentiful in the dataset (F1 score > 97%). On the other hand, as
reported in Table 4.4, the scores on all classes from D1 are lesser than the same classes on
D2. This is because images from D1 exhibit a low variability. Since this dataset exludes all
images with a cloud cover, as thin it may be, it covers a smaller surface always with the same
environmental conditions. Models trained on D1 generalize poorly on new acquisitions. On
the contrary, D2 covers a shorter time span but the images are more diverse, with various
weather and illumination perturbations. This allows the model to learn a form of invariance
needed for a good generalization.

More importantly, learning on all 12 multispectral bands improves the overall accuracy
by an absolute 2% on D1 and 2.5% on D2 compared to the RGB model. This is not specific
to one class in particular, as most classes benefit from the additionnal spectral information
(cf. Table 4.4). This strengthens our initial intuition: multispectral information is richer and
more expressive than color image alone.

Let us underline that the labels used in this study are relatively old (2009) and coarse
(300 m/px). Not only this explains the “pixel” and blocky look of the ground truth on the
illustrations, it also introduces quite the approximation in the evaluation protocol. Indeed
the areas imaged by Sentinel-2 might have changed (and their land cover too) since 2009.
Moreover the spatial resolution of Sentinel-2 is enough to identify objects and structures that
are mixed – and therefore invisible – in the GlobeCover annotations. Nonetheless there is a
strong qualitative agreement between the predictions and the labels. It is plausible that some
of the disagreements are actually due to the coarseness of the GlobeCover map or to changes
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that occurred over time. This leads us to think that predictions inferred by SegNet might
be actually more accurate on some classes – especially artificial surfaces – than the avilable
“ground truth”. Some qualitative examples of semantic maps are pictured in the Figs. 4.3
and 4.4.

Finally, this study leads us to two conclusions. First it shows that fully convolutional net-
works are also relevant for multispectral image processing. Indeed, the SegNet architecture
requires minimal adaptation to work on Sentinel-2 data. Although some details remain to
be polished, such as better resampling of the various bands and the reference ground truth
resolution, there is no major obstacle to a large-scale implementation of FCNs for semantic
segmentation of multispectral images. Second, we showed that learning from all bands
including those outside the visible domain increase the model accuracy, which benefit from a
richer and more expressive information. This notably increases the discrminative power of
SegNet on classes that are ambiguous when looked at only using the RGB color channels.

Table 4.4: SegNet accuracy and F1 scores on the D1 and D2 Sentinel-2 datasets (cf. Table 4.3 for detail
on the classes).

Dataset Model Accuracy 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

D1
SegNet RGB 55.0 39.0 35.5 1.81 71.0 0.91 0.00 0.00 0.00 0.00 2.08 0.00 5.33 0.00 36.0 0.00 74.6 –
SegNet MSI 66.5 36.2 38.1 1.45 85.1 6.33 0.00 1.39 0.00 0.00 2.18 0.00 3.36 0.00 34.3 0.00 97.8 –

D2
SegNet RGB 84.9 74.7 64.1 38.0 89.9 68.4 58.4 51.4 36.7 39.8 61.0 45.7 55.2 47.9 76.9 66.9 98.7 96.7
SegNet MSI 86.4 76.0 66.8 43.4 92.4 72.3 51.0 59.5 22.9 50.0 67.4 48.0 53.5 41.0 77.0 66.7 98.8 97.7

True colors Prediction Ground truth

True colors Prediction Ground truth

Figure 4.3: Prediction samples using SegNet MSI trained on D2 (with clouds).
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True colors Prediction Ground truth

Figure 4.4: Prediction samples using SegNet MSI trained on D1 (no clouds).

4.2 Hyperspectral imaging

Up until this point we have noted that usual RGB and infrared color images strongly benefit-
ted from the introduction of deep convolutional neural networks. Moreover we extended
in Section 4.1.2 these CNNs to multispectral imaging, so that we were able to leverage the
additional light wavelengths that can help detect objects that would be invisible otherwise.
In the real world, every material has its own spectral signature, defined by the way it reflects
light. If one could measure the complete spectrum of reflected light intensity, it would be
possible to perform fine-grained analysis of ground occupation [16, 20].

This reasoning is core to the development of hyperspectral sensors. They are cameras with
a relatively low spatial resolution but a high spectral resolution so they can measure the full
light signature of an object for several hundreds of regularly distributed wavelengths.Deep
learning techniques that have been designed for natural image and classical computer vision
cannot be directly applied to this kind of data. Indeed the spectral dimension generally
dominates the characteristic spatial dimension of the objects of interest. For example a
standard aerial hyperspectral acquisition has a GSD of about 1 m/px and a spectral resolution
of 10 nm/bande with 200 spectral bands between 0.4 µm and 2.5 µm. A standard house of
12 m× 10 m 2, this object is described in the hyperspectral data by a 12× 10× 200 tensor.
As a comparison, EHR RGB aerial images would present a 10 cm/px GSD on 3 channels
between 0.4 µm and 0.7 µm. The same house would be described by 120× 100× 3 tensor.
Although this represents the same amount of raw data (24 000 scalars versus 36 0003), the
structures differ significantly. Hyperspectral images are generally named hyperpsectral cubes
(or sometimes hypercubes) (cf. Fig. 4.5). Finally the low spatial resolution of hyperspectral
sensors entails that a hypercube covers the same geographic area with less pixels than a color
image. Labeled training samples often come in lesser number than we have been accustomed
to in the previous chapter. These two factors are the main obstacles we will face to use deep
learning on hyperspectral data.

In Section 4.2.1, we recall the fundamentals of hyperspectral imaging before detailing
some commonly used public datasets in Section 4.2.2. We give an broad overview of the usual
classification techniques used on hyperspectral images in Section 4.2.3. The Section 4.2.4
concludes this chapter with a comparative review, both theoretical and experimental of deep
neural networks for automated cartography based on hyperspectral images. Readers familiar
with hyperspectral imaging can skip the first sections and directly read the last one.

2Based on a survey from the ministry of ecology, the average surface of a house was France is 121 m2 in 2015
(Le prix des terrains à bâtir en 2015).

3Considerations regarding integer and floating point representations are swept under the rug in this example.
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Figure 4.5: Hypercube of the Pavia Uni-
versity dataset.

Figure 4.6: Sample reflectance for mineral identification.
Image credits: Aappo Roos (Wikimedia Commons, CC-BY-
SA 3.0)

4.2.1 Fundamentals of hyperspectral imaging

A hyperspectral camera measures4 the light intensity (in spectral luminance units) of the
luminous flux φ per unit surface per unit solid angle. This is a physical value expressed in
W·m−2·sr−1. The sensors captures this luminous flux for a set of radiometric bands regularly
distributed, generally with on 10 nm width. For each pixel, i.e. for each atomic surface
unit, the sensor samples the surface spectral signature on tens – or even hundreds – of
wavelengths. All these spectra can be pictured as reflectance curves, as illustrated by Fig. 4.6.
The luminous flux is comprised of the light emitted and reflected by the object, but also the
light diffused by the environment which is added to the measurement.

Earth Observation acquisitions are performed either from the top of the atmosphere
(satellite images) or from the atmosphere itself (aerial images). However the atmosphere is
not a neutral medium for light waves and changes the signal when it propagates. Satellite
images can then be altered by clouds, fog and aerosols. Since the acquisitions bands are
narrow, hyperspectral sensors can be very sensitive to these perturbations. In this work we
focus on ground-level surfaces and materials. Therefore the relevant value is the reflectance
of the ground, defined as the ratio between the flux it reflects and the incoming flux:

ρ =
φreflected

φincoming
(4.1)

The reflectance ρ indicates the reflecting ability of an object for a given wavelength – and
is also called the albedo. This a value with no unit between 0 (fully absorbing surface) and
1 (fully reflecting surface). Generally an object that reflects more than 80% of the white
light appears white and an object that reflects less than 3% appears black. As for luminance
measurements, we consider the radiometric reflectance ρλ that depends on the wavelength.
The reflectance is more useful than luminance since it is an intrinsic property of the material
and does not depend on environmental conditions. The reflectance curve of a material
corresponds to its spectral signature and is a very discriminative feature (cf. Fig. 4.6). When
possible we will prefer to work with reflectance values.

Environmental corrections Converting luminance values to reflectances require that en-
vironmental factors be suppressed to avoid polluting the measurement. Compensating

4Multispectral and hyperspectral cameras generally work on a push broom mode: they acquire an image line
by line, which is different from usual color cameras. Technical details regarding the acquisition of the images
and sensor calibration are out of the scope of this manuscript.
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Chapter 4 Extension to unconventional sensors

perturbations involve techniques called atmospheric corrections [19, 48, 11]. These are
designed to reduce the influence of the atmosphere on the measurement [25] (diffusion and
distortion) and transform luminance images into reflectance ones. To do so specialistes design
atmospheric models they then invert to estimate and remove the impact of light duffision
and radiative phenomenons. Generally these models require knowledge of experimental
conditions, especially the brightness. Part of these informations can be obtained after the
experiment thanks to ephemerids or in situ by embedding a sunlight sensor on the back of
the plane. Portable hyperspectral sensors use an active illumination directly oriented on the
target to work around this problem.

In additio, geometry is also involved in estimating the reflectance. Indeed it is often
assumed that the ground is locally planar. Natural terrain relief and elevated objects can
introduce undesired reflections and occlusions. The former result in over-illumination when
several rays converge to the same point while the latter induce shadows that attenuate the
signal. Some correction techniques can take the DSM into account to alleviate these problems,
especially common in urban areas [10].

No matter the correction applied and the expertise involved, let us underline that all
preprocessing of the sort is imperfect and might induce errors and uncertainties in the data.

Visualization Contrary to the human eye, a hyperspectral camera can see well beyond the
visible spectrum. Most hyperspectral sensors cover wavelengths from ultraviolet (300 nm)
to the limit of the medium infrared (3000 nm) using bands of about 10 nm. In comparison
the visible light only covers wavelengths from 300 nm (purple) to ' 700 nm (red). Everyday
screens use the RGB color mode and agregate three intensity maps in red, green and blue
to give the illusion of a natural image. This approaches mimick the three types of receptive
cells present in the human eye. However a hyperspectral image is a data cube inside which
every pixel contains a full spectral response. These spectral signature characterize surfaces
and materials when they are completely pure. In practice the low spatial resolution induces
some level of mixing of various materials inside the same pixel, especially when vegetation is
involved.

As there is a significant spectral resolution gap between hyperspectral (very accurate
compared to human eyes) and traditional RGB imaging, there is straightforward way to
switch between the two. A hyperspectral image contains much more information than the
color image with the spatial resolution. Moreover, if it is feasible to reconstruct a RGB image
by compositing three well-chosen channels in the hypercube, the difference in resolution
entails that is only a pseudo-image which would not have been this way by human eyes.
Indeed a consumer-grade camera acquire separately red, green and blue light using filters
to imitate the human eye, while a hyperspectral sensor generally perform a line-by-line
acquisition of the whole spectrum separated by a prism (“pushbroom” sensor). These two
different modes that are not equivalent.

4.2.2 Datasets

The community has made public several labeled hyperspectral images to study and compare
machine learning techniques for cartography5. We detail here the most popular datasets.

As we will see, one of the main difficulties in machine learning for hyperspectral image
processing is the scarcity of labeled data for supervised learning. Since different sensors
exhibit different behaviours, calibrations and specificiations (number of bands, resolution. . . ),
it is hard to combine multiple datasets, especially since external factors also play a role
(brightness, atmospheric correction etc.). Unluckily the few labeled hyperspectral images
available to scientists are very small compared to the usual RGB image datasets. This make
benchmarking and validating supervised machine learninge techniques more complex and

5http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes

95

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes


4.2. Hyperspectral imaging

error-prone. There is one large-scale hyperspectral dataset6 over the US, acquired using the
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) camera, however the images are
not labeled and therefore not directly useful to train supervised models.

Pavia Pavia is a hyperspectral dataset acquired using the ROSIS sensor with 1.3 m GSD over
the city of Pavia, Italy. It consists in two scenes: Pavia University (103 bands, 610 px× 340 px)
and Pavia Centre (102 bands, 1096 px× 715 px). The two images are labeled for 9 classes
of interest, ranging from urban materials (bricks, asphalt, metals) to water and vegetation.
Labeled pixels cover approximately 50% of the images.

It is one of the main dataset in the hyperspectral image processing community since the
images are two of the biggest available that have been extensively annotated. Moreover the
same camera has been used for both images which makes it possible to test transfer learning
approaches on hyperspectral data.

Indian Pines The Indian Pines dataset is an acquisition of the American AVIRIS sensor. It
represents an agricultural area using 224 spectral bands on 145 px× 145 px, with a ground
resolution of 3.7 m/px. Most of the image consists in fields divided in about 10 types of
crops, the remaining surface being mostly dense vegetation. 16 classes of interest have been
labeled, some being very rare (less than 100 samples). Water absorption bands (108→112,
154→167 and 224) are generally removed from the data since they are extremely noisy.

Depite its small size, the Indian Pines dataset is very popular in the hyeprspectral litera-
ture. The scarce classes are sometimes ignored when evaluating classification algorithms.

Salinas The Salinas dataset is another image acquired using the AVIRIS sensor. The scene
is comprised of 512× 217 spectral samples at 3.7 m/px GSD. The water absorption bands
(108→112, 154→167 and 224) are generally removed from the data. There are labels for 16
classes, mostly crops, vegetation and types of soil.

Kennedy Space Center (KSC) The KSC dataset is another AVIRIS image with a spatial
resolution of 18 m/px. It covers the area around the Kennedy Space Center at Cape Canaveral
(Florida, United States). The image is of dimension 512× 614. Water absorption bands and
bands with a low signal-to-noise ratio are removed to keep only the 176 most informative
bands. 13 vegetation classes have been labeled around the center.

Botswana The Botswana dataset is a satellite acquisition over the Okavango river delta
using the Hyperion sensor from NASA’s EO-1 satellite. Its GSD is 30 m/px with 242 bands,
resulting in a 1476× 256 image. Only the 145 bands 10→55, 82→97, 102→119, 134→164
and 187→220 are generally kept, the other being either in the water absorption frequencies
or wrongly calibrated. There are 14 classes of interest consisting in various vegetation and
swamps types relevant to the local ecosystem.

DFC 2018 The DFC 2018 hyperspectral dataset is a large hyperspectral 2384× 1202 image
over Houston downtown (Texas, United-States) using an aerial hyperspectral camera. Its
spectral range covers 380–1050 nm with 48 bands at a 1 m/px GSD. There are 20 labeled
classes, including urban structures (buildings, different types of roads, rails, cars, trains. . . )
and vegetation (healthy, stressed, evergreen and deciduous). The image is one of the data
source from the Data Fusion Contest 2018, detailed in l’Appendix A.1.3. Half the labels
are publicly available, the rest is kept hidden by the organizers to manage an independent
evaluation server.

6AVIRIS Data Portal: https://aviris.jpl.nasa.gov/alt_locator/
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Summary Characteristics of the presented public datasets are listed in the Table 4.5. The
main conclusion we can draw from this report is that most datasets are small, with Indian
Pines being tiny compared to other large remote sensing datasets. The AVIRIS sensor is
used on multiple scenes but the labeled classes are not the same across acquisitions, which
prevents model generalization on multiple datasets.

Table 4.5: Summary of the various publicly annotated hyperspectral datasets.

Dataset # pixels # bands Spectral range Resolution # labels # classes Mode

Pavia 991 040 103 0.43–0.85 µm 1.3 m/px 50 232 9 Aerial
Indian Pines 21 025 224 0.4–2.5 µm 3.7 m/px 10 249 16 Aerial

Salinas 111 104 224 0.4–2.5 µm 3.7 m/px 54 129 16 Aerial
KSC 314 368 176 0.4–2.5 µm 18 m/px 5211 13 Aerial

Botswana 377 856 145 0.4–2.5 µm 30 m/px 3248 14 Satellite
DFC 2018 5 014 744 48 0.38–1.05 µm 1 m/px 547 807 20 Aerial

4.2.3 Usual approaches

This section gives a brief overview of commonly used machine learning techniques applied
in hyperspectral image processing state of the art, with a focus on supervised methods.

Normalization and preprocessing

As we have seen raw hyperspectral data are difficult to interpret directly. In addition to
atmospheric correction and geometric orthorectification to produce georeferenced reflectance
maps, it is common to apply some sort of normalization on the hypercube.

First, it is not uncommon to remove some wavelengths that are difficult to learn from. Re-
flectance values in some bands might saturate and squash the spectral dynamics, depending
on sensor calibration. On the opposite, atmospheric humidity attenuates the signal in the
water absorption bands, adding noise to the data. Overall it is frequent to keep only bands
with a decent signal-to-noise ratio, which reduces slightly the dimension of the data and
facilitates the training by removing noisy information.

Second, a numerical normalization of the spectrum values are frequently applied. The
normalization strategy depends on the spectral properties that one wish to highlight:

• If the shape of the spectra is more imoprtant the actual intensity values, practicionners
often switch to the spectral angle representation which is obtained using a spectral
normalization:

X∗ :=
X
‖X‖

,

• Normalizing the statistical moments of first and second order (zero-mean and unit-
variance) can be done globally or for each band to make outlier more prominent and
easier to remove (using the ±5σ rule for example):

I∗ :=
I−mI

σ2
I

where mI is the mean ofI and σI its standard deviation,

• The global normalization in [0,1] is often used to simplify the handling of numerical
values. It can also be applied band-wise to give the same importante to all wavelengths:

I∗ :=
I−min(I)

max(I)−min(I)
.
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Outliers, e.g. reflectances over the 98th percentile or over mI+5
√
σI can either be truncated

or ignored to prevent them from degrading the classification. This can be critical to avoid
learning on anomalous pixels provoked by correction errors, multiple reflections or strongly
reflective materials (such as metals).

Let us stress that one pixel from a hyperspectral would correspond to the spectral
signature of the observed material on the unit surface – in perfect experimental conditions.
In the real world the spatial resolution of the hyperspectral sensors is quite low and one pixel
corresponds to a mixture of several materials. Let ϕ1, . . . ,ϕn denote the pure spectra of the
set of unique materials appearing in the observation. Then, to a pixel (i, j) corresponds a
local observed spectrum φi,j that is related to ϕi by a function f :

φi,j = fi,j(ϕ1, . . . ,ϕn) '
n∑

k=1

λkϕk . (4.2)

If the terrain is plane, we can hypothetize that f is a linear combination in wich the coefficient
λk represents the proportion of material k in the mixture corresponding to the observed
area7.

A large body of work exists in the literature to solve the “unmixing” problem, i.e. inverting
the mixtures [44]. The simplest classification possible consists in finding all the raw materials
that are present in the observation and then compute abundancy maps. The reference spectra
of the pure materials are called endmembers8 and can be used to decompose the mixed spectra.
Abundancy maps consist in the various proportions of the materials in every pixel. Generally,
if the pure spectra Sk are known for an image I, it is possible to solve the inverse linear
system to obtain the λk mixture coefficients on all pixels. These methods mostly rely on linear
algebra techniques and numerical methods for problem inversion, e.g. signal decomposition.
Learning-based techniques also exist for unmixing, for example using clustering to find the
endmembers when they are unknown. Identifying endmembers and unmixing in its broadest
sense is out of the scope of this work.

Spectrum classification

The simplest hyperspectral data classification approaches are piwel-wise operations that pro-
cess every spectrum independently from the others. We present in the following subsection
some of these 1-dimensional methods. We deliberately ignore techniques relying on expert
feature engineering to focus on statistical learning.

A first step in many classification pipelines consists in dimension reduction to alleviate
the curse of dimensionality. Because of the high spectral resolution of hyperspectral imaging
sensors, neighbouring bands tend to be located in very close wavelengths and therefore be
strongly correlated. Close bands therefore express redundant information. Compressing the
hypercube can then be interesting both for reducing the size of dataset and keeping only dis-
criminative information. For example, Le Bris et al. [30] and Bevilacqua and Berthoumieu [8]
use band selection strategies to preserve only the bands relevant for classification. Rodarmel
and Shan [50] applies a compression strategy by transforming the spectra with a Principal
Component Analysis (PCA) before classification. Some expert features such as the NDVI and
NDWI can also be interpreted as a way to reduce the dimensionality of the hypercube. Once
reduced the data is classified using standard statistical models: decision trees and random
forests, SVM, etc. Dimension reduction simplifies the representation space and facilitates the
optimization of the classifiers.

7However it should be noted that some materials have non-linear interactions and these cases have to be dealt
with separately.

8A reference to mineralogy, where endmembers are minerals at the end of a purity chain. Most minerals are
solid solution, i.e. mixtures of these endmembers).
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Nonetheless the spectral-only strategy is often not enough since it does not leverage the
spatial structure of the objects of interest. Indeed as imaging technology improves, so does the
sensor spatial resolution and the number of pixels observed for the same area. Neighbouring
pixels will share many spectral properties while also exhibiting specific spatial structures.
For example buildings are generally built with the same material but have polygonal shapes
while vegetation is chaotic and fractal. Learning from these characteristics robustify the
models.

The simplest strategy consists in performing a spectrum-wise classification using a 1D
model and then regularize the inferences using a post-processing. Graphical models and
especially CRF are very well-suited to this end [62] as they can model priors regarding class
transitions. The spatial regularization is decorrelated from the spectral prediction as it comes
only in a second step.

On the contrary, some methods integrate the spatial features as soon as possible using
the region-based classification pipeline – presented in Section 3.1. Tarabalka, Chanussot,
and Benediktsson [57] and Fauvel et al. [22] compare several two-step pipelines: first a
segmentation of the hyperspectral image and then pixel-wise predictions agregated and
merged for each region to enforce a local spatial consistency.

Finally there are some classifiers based on spatial-spectral features. This is the approach
originally introduced to leverage correlation between spatially close pixels to detect end-
members [46, 18] using a mixture of spatial and spectral classifiers. More recent classifiers
use kernels specifically tailored to work on local spectral neighbourhoods, either with fixed
or adaptative shapes, to extract spatial-spectral features. Notably Camps-Valls et al. [9] intro-
duced SVMs with spatial-spectral kernels for hyperspectral images which became quickly
popular in the literature [56, 21]. More recently Cui, Chapel, and Lefèvre [17] proposed
SVMs with kernels tailored to work on morphological attribute profiles while Tuia, Flamary,
and Courty [59] designed an adaptive kernel selection on a set of random convolutional
filters that reduces the gap with deep representation learning methods.

4.2.4 Deep learning and hyperspectral imaging

Models detailed up to this point are shallow classifiers with no representation learning. Yet
the hyperspectral image processing community started to look into deep neural networks in
2013 and many papers have ssince been published to adapt these methods to hypercubes.
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Figure 4.7: 1D CNN for spectra classification Hu et al. [29].

An initial improvement on the standard shallow classifiers (SVMs and random forests)
consists in replacing them by multilayer perceptron. The pipeline remains exactly the same,
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yet if the neural network is deep enough, it will probably be more expressive than the shallow
classifiers and ergo able to learn more discriminative features. This approach is actually not
that recent since there were already some works based on shallow neural networks with
one or two hidden layers in the 2000s [26, 49]. The deep learning tsunami needed a few
years to reach the field of hyperspectral image processing. In 2015, Hu et al. [29] used 1D-
CNNs on individual spectra (cf. Fig. 4.7) to classify them using automatically learnt features
Mou, Ghamisi, and Zhu [41] introduced an alternative take on spectrum classification by
considering them as sequences of reflectances from which a Recurrent Neural Network (RNN)
can learn patterns.

Once deep neural networks are applied on hyperspectral data, few authors spend a lot
of time looking into band selection, outlier rejection, saturation compensation or extensive
analysis of the physics involved. Deep models indeed shine in representation learning and
they are most often used on the – normalized – raw data, even when it includes noisy or
saturated spectral bands. They are robust enough to not care too much about these problems
in practice as the model is supposed to naturally ignore non-relevant information from the
data.

A popular group of models that contributed to this trend are the autoencoders. As signal
compression algorithms, they have been used to train dimension models with a minimal
information loss. Since autoencoders are tailored on a specific dataset, they learn compressed
embeddings that are significantly more efficient than standard unsupervised approaches such
as PCA, with many applications in denoising [63]. The unsupervisedly learnt embeddings
can finally be used as features for any sort of statistical classifier [24].

As explained before spectral only approaches are rarely enough and there exists a plethora
of spatial-spectral techniques based on a mixture of spatial and spectral features, combining
one pixel and its neighbours. A classical feature consists in concatenating the spectrum
of the considered pixel with the K main components of an PCA applied on its local w × h
neighbourhood (in most cases, w = h ' 8 and K = 3). This vector is used as an input to
deep classifiers, either supervised or unsupervised: DBN [33, 12], RBM [35, 40] or stacked
autoencoders [13, 38, 55, 61].
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Figure 4.8: Hybrid PCA+CNN architecture for hypercube classification Makantasis et al. [39].

The comeback of CNNs after 2010 also impacted the hyperspectral community. These
networks were designed to mimick the human eye and process RGB or grayscale images
using 2D convolutional filters. Makantasis et al. [39] and Slavkovikj et al. [53] designed
a hybrid architecture that alternates between spatial convolutions and spectral dimension
reduction (using a PCA for Makantasis et al. [39] and by downsampling for Slavkovikj et al.
[53]). The features produced this way can be flattened and fed to a multilayer perceptron
that performs the final classification, as pictured in Fig. 4.8. The main advantage of this
approach is to automatically learn features tailored for the classification task at hand. Zhao
et al. [68] extend this technique in the semi-supervised setting by introducing multi-scale
convolutional autoencoders. In the unsupervised setting, Romero, Gatta, and Camps-Valls
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[51] proposed a CNN for feature extraction that learnt a sparse dimension reduction based
on a spectrum and its neighbours. Finally Zhao and Du [67] and Yue et al. [66] suggest a
hybrid approach combining a 2D CNN as a spatial feature extractor combined to a 1D-CNN
to learn spectral features.

Although effective these architectures lack a form of elegance as they separate spectral
and spatial aspects of the hyeprspectral data. However more classical approaches have shown
that spatial-spectral kernels often outperform the classifiers based one type of feature only.
Several works have simultaneously proposed 3-dimensional convolutions to learn kernels
that directly operate on the data cube. Ben Hamida et al. [6] and Chen et al. [14] suggested
CNN architectures based on a combination of 3D convolutions for feature learning and 1D
convolution for spectral compression. Luo et al. [37] introduced a variant of the PCA-CNN
of Makantasis et al. [39] by replacing the PCA by a 3D convolutional layer that achieves
the same dimension reduction, followed by a classical 2D CNN. As usual, classification is
achived pixel-wise using two fully convolutional layers at the top of the network. Lee and
Kwoon [32] extended this structure to the more efficient FCN design with a first layer that
learns spatial-spectral features with two parallel convolutions in 1D and 3D, inspired by
the Inception module. The rest of the network has a fully convolutional design based on 1D
convolutions inside residual blocks.
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Figure 4.9: 3D CNN for hypercube classification Chen et al. [14].

Finally the most recent approaches converged to full 3D convolutional networks derived
from the canonical CNN architectured, extended from RGB color images to hypercubes in
the third dimension. Many variations of this principle have been introduced [34] integrating
more and more bells and whistles from the computer vision literature such as multi-scale
feature extraction [28] and semi-supervised training [36]. Overall this a natural extension of
the CNN model from LeCun et al. [31] to 3D data volumes, as schematized in Fig. 4.9.

Despite the large number of publications on hyperspectral image classification, there
is no standardized benchmark to validate models and pit several methods in competition.
Worringly, each author has their own strategy and chooses one or more datasets from those
presented in Section 4.2.2 with specific train/validation/test splits. This makes it difficult
to robustly compare methods across papers since authors rarely prepare data the same way.
Moreover there are virtually no open source implementations of deep hyperspectral classifiers
officially sponsored by their authors, while this is now relatively common in comptuer vision.
For these reasons we developed a modular deep learning toolbox for semantic mapping of
hyperspectral images, named DeepHyperX9. It encompass several supervised models, from
linear SVMs to the state of the art 3D CNNs. These models can trained and evaluated on
various public datasets such as Pavia Center and University, Indian Pines, Kennedy Space
Center or Data Fusion Contest (DFC) 2018. The most common hyperparameters can be tuned
to study how the size of the spatial neighbourhood, the number of training samples or the

9https://github.com/nshaud/DeepHyperX
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optimizer impact the classification accuracy. This software allows us to provide an unified
benchmarking setting to compare the performance of various state of the art models.

On the technical side, this toolbox is written in Python [23] and is an interface wrapping
the PyTorch [47] and scikit-learn [45] libraries. Deep neural networks are implemented on
PyTorch so they can be run either on Central Processing Unit (CPU) or GPU while the SVMs
use the scikit-learn implementation. Several public datasets are preconfigured to facilitates
experiments. The modular architecture of the toolbox is designed so that programmers can
easily add new custom datasets or new deep networks to test new ideas or experiment state
of the art models on private datasets.

In what follows we evaluate several deep models from the state of the art in hyperspectral
image classification. To the best of our knowledge it is the first principled benchmark of
the convolutional networks from the literature. Most publications perform experiments
that slightly differ one from another, either because they ignore some classes or because the
train/validation splits are not consistent across papers. Moreover the most frequent approach
to select training samples consists in training the models on a set of pixels randomly sampled
uniformly on the image, and then validate on the test set which is the remaining pixels of
the image. We argue that this method is a best unrealistic and sometimes even plain wrong.
Indeed, close pixels will be strongly correlated and therefore the validation set will be very
similar to the validation set, so the classification metrics will not represent a reasonable
estimate of the model’s generalization ability. Instead, accuracy will be significantly overesti-
mated. as this reward overfitting. These practices are not standard in the machine learning
community and even discouraged. The preference genrally goes to a clear split between
train and test. In our case will evaluate the models using spatially disjoint train/test split;
We perform k-fold cross-validation on multiple splits to ensure the robustness of the results.
More critically, for 2D and 3D CNNs that looks not only at a pixel but also its neighbours, it
ensures that no pixel from the validation set can be accidentally seen during training.

In the rest of this section, we will use the splits defined by the Institute of Electrical
and Electronics Engineers (IEEE) Geoscience & Remote Sensing Society (GRSS) on the
DASE evaluation server10 for the Indian Pines, Pavia University and DFC 2018 datasets.
Hyperparameters are tuned using a small validation set containing 5% of the training set.

We use our toolbox to reimplement several models from the state of the art. We tried our
best to faithfully reproduce the models. Some modifications have been made and are listed
below:

• CNN 1D de Hu et al. [29]. As the optimizer was not specified in the paper, we use
stochastic gradient descent with momentum in its stead.

• RNN 1D de Mou, Ghamisi, and Zhu [41]. We used the usual tanh activation instead of
the parametrized version introduced in the paper.

• CNN 3D+1D de Ben Hamida et al. [6]. No modification.

• CNN 3D de Li, Zhang, and Shen [34]. We increased the number of filters from 16 to 32
in the convolutional layers for better convergence.

The 3D CNNs are trained on 5× 5 neighbourhoods. We use two simple models as
baselines: an SVM with hyperparameters tuned by grid search and a multilayer perceptron
with three layers using the ReLU [43] activation with Dropout [54] regularization. The
unbalance between classes is corrected at the loss function level by using the inverse median
frequency weighting. Data augmentation is applied in the form of flipping and mirroring.
Detailed results are reported in the Table 4.6, incudling the overall accuracy et Cohen’s κ on
the three datasets. Experiments have been repeated 5 times on Pavia University and Indian
Pines, though only once on the DFC 2018 dataset since it is significantly larger.

10GRSS Data and Algorithm Standard Evaluation website : http://dase.ticinumaerospace.com/
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Table 4.6: Classification results of several models from the DeepHyperX toolbox on the Indian Pines,
Pavia University and DFC 2018 datasets. The best results are in bold, the second best in italics.

Model Indian Pines Pavia University DFC 2018
Accuracy κ Accuracy κ Accuracy κ

SVM 81.43 0.788 69.56 0.592 42.51 0.39
1D NN 83.13± 0.84 0.807± 0.009 76.9± 0.86 0.711± 0.010 41.08 0.37

1D CNN [29] 82.99± 0.93 0.806± 0.011 81.18± 1.96 0.759± 0.023 47.01 0.44
RNN [41] 79.70± 0.91 0.769± 0.011 67.71± 1.25 0.599± 0.014 41.53 0.38

3D+1D CNN [6] 74.31± 0.73 0.707± 0.008 83.80± 1.29 0.792± 0.016 46.28 0.43
3D CNN [34] 75.47± 0.85 0.719± 0.010 84.32± 0.72 0.799± 0.009 49.26 0.46

Unsurprisingly we obtain results significantly lower than those reported in the original
publications as we use a spatially disjoint train and validation sets. Our results highlight
a singular behaviour of the Indian Pines dataset compared to other images. In practice, it
seems that spatial models underperform pure spectral models on this dataset. We suggest
that the low spatial resolution of Indian Pines (20 m/px) might entail already significanty
mixtures of various endmembers in crop patches of 400 m2. Neighbouring pixels might not
bring more information. On higher resolution Pavia University and DFC 2018, 3D CNNs
significantly outperform 1D models, increasing the overall accuracy by respectively 3% and
2%. In particular, the DFC 2018 dataset is quite hard due to the large number of similar
classes with low inter-class variability. In our experiments 1D fully connected networks
suffer from a strong overfitting and generally performs worse than a simple linear SVM. This
overfitting is especially consequent on the DFC 2018 as the test set is completely disjoint
from the initial training image, whereas train and test objects can be nearby in Indian Pines
and Pavia University splits from DASE. Finally the 3D CNN 3D from Ben Hamida et al. [6] is
not able to learn discriminative spatial information from the DFC 2018 dataset. In practice
the first two 3D convolutional layers have too few parameters and the overall receptive field
of the network is too small to be effective in modeling the spatial relationships between pixels
at such as high resolution.

A major obstacle that we identify in this study is the difficulty of training models that do
not suffer from overfitting on hyperspectral datasetS. The small number of labeled samples
available for training are rarely enough to train the large deep networks introduced in the
literature without falling into the trivial memorization solution. Increasing the training set
size is not easy either as sensors have different specifications and calibrations that prevent
practictioners from relying on transfer learning. Even though domain adaptation techniques
can alleviate problems regarding the generalization of trained models on new images [60],
they do not solve the problem of the initial training. One workaround consists in generating
fake synthetic data that is realistic enough to improve the generalization ability of the model.
This approach will be studied in Chapter 6.

Let us also remind that most current neural networks for hyperspectral images perform
pixel-wise classification using one inference per pixel. As disccused in the Chapter 3, the
ever-increasing resolution of the hyperspectral sensors will require that new models switch
to the more efficient fully convolutional architectures adapted to 3D kernels.

Finally, we hope that new annotated hyperspectral datasets – larger and more complex
than the existing ones – will appear in the next few years. The current public datasets have
reached saturation and the incremental improvements from the state of the art are of dubious
statistical robustness. Moreover it is unclear what the benefit is from replacing a model with
a 99,5% accuracy with another one with 99,8%. It is more plausible that current models are
overfitting on the datasets: are human annotators even precise at more than 99%? A standard
benchmark based on a new large-scale dataset would make it possible to fairly benchmark
various methods on complex hyperspectral classification tasks, as has been done for natural
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images. The efforts from the IEEE GRSS in this direction are laudable, especially thanks to
the introduction of the DFC 2018.

Overall we were able to highlight the problems that practioners will face when looking
to apply deep learning on hyperspectral images. Although there is an apparent consensus
praising spatial-spectral approaches, especially 3D CNNs, as superior to traditional classifi-
cation techniques, we showed that actual accuracies are significantly lower than reported in
the literature when using more strict evaluation strategies. We developed and published a
software toolbox called DeepHyperX for deep learning on hyperspectral images that makes
it possible to easily compare various models on multiple public datasets with a standard
protocol. This will allow hyperspectral specialists to apply deep networks from the state of
the art on their semantic mapping tasks, but also machine learning experts to validate their
models robustly. We hope this tool will help reinforce the progresses that have been made in
combining deep learning and hyperspectral imaging.

4.3 Lidar imaging and digital surface models

One of the popular Earth Observation sensor except optical sensors is the Light Detection
And Ranging (Lidar). It is laser sensor that can be used, among other applications, to measure
the height of any point at the surface of the Earth. Optical acquisitions from an airplane are
often complemented by a Lidar sensor to estimate the ground topology. This section studies
how FCNs can be used to leverage this information and compare this approach to the results
obtained with image-based models in the Chapter 3.

The Section 4.3.1 first details a mapping strategy based on digital surface models as
the sole input while the Section 4.3.2 investigates the use of composite fake color images
agregating height maps and NDVI.

IRRG orthoimage DSM nDSM NDVI Composite

Figure 4.10: Multiple modalities of the tile #30 of the ISPRS Vaihingen dataset.

4.3.1 Digital surface model

Point clouds acquired by Lidar imagery produce digital models of the terrain, its relief
and topology: DTM, DSM and nDSM. These points are not regularly distributed on the
ground, instead they form a cloud with a variable density that never corresponds to a well-
defined regular grid. Obtaining digital surface models can be done through rasterization
(i.e. projection in a 2D plane and interpolation) of the Lidar point clouds [15] or by stereo
matching in an image pair [58]. We will focus on the former. Terrain models are interesting
since they contain local elevation at the ground level (DTM) or at the object level (nDSM).
Most remote sensing data, both aerial and satellite, are acquired from a nadir position and
are orthorectified: they do not contain any perspective information so there is no geometrical
clue that could help find heights or distances (a pecularity that is not shared with natural
images). This has its advantages (very few occludings elements, a unique scale factor) but
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also a drawback: it is very hard to estimate the height of an object based on an orthophoto
alone. Projected shadows can give a partial information regarding objects’ heights but it is
not reliable since it depends on the ground relief and environmental illumination conditions
(acquisition azimuth, Sun’s location, weather).

Yet urban environments contain many elevated structures that can be confused with
artificial soils: bridges, parking garages, concrete or vegetal roofs, dense tree-like vegeta-
tion. . . Vision-based interpretation using deep networks as done in the Chapter 3 produces
semantic maps where these situations result in erroneous predictions. The digital surface
models would provide an ancillary information that would complement optical images and
improve the model accuracies.

A digital surface model can be understood as an image in which every pixel has an
intensity proportional to its height, based on its geographical coordinates. The reference
level can vary and is not necessarily the same for all pixels (for example in the nDSM). In
practice the heights are normalized between [0,255] resulting in grayscale images. A first
question that one could ask is “how do semantic segmentation deep networks such as SegNet
perform on these images?”. For completeness’ sake, let us recall that there are techniques to
directly process the raw Lidar signal. For example Yan, Shaker, and El-Ashmawy [64] looked
into land cover mapping based on classification of Lidar echos while Yang et al. [65] used a
CNN for semantic segmentation of Lidar point clouds. These methods are however out of
the scope of this work.

Focusing on the grayscale rasters corresponding to DSM and nDSM, we use the ISPRS
Vaihingen dataset. We keep the hyperparameters tuned in the Chapter 3. The goal here
is to estimate how much semantic information deep models can extract from the digital
surface models. In this case the models are derived from Lidar data although they could be
computed by stereo matching with no practical difference.

We train a SegNet model with only one input channel on the DSM and the nDSM. We
use the tiles 1, 3, 7, 11, 13, 17, 23, 26, 28, 32, 34 and 37 for training and the tiles 5, 15, 21
and 30 for validation. Network weights are initialized randomly using the policy from He
et al. [27]. Results are reported in Table 4.7, including F1 for the five classes of interest of the
ISPRS Vaihingen dataset and the overall accuracy. These results can be compared to those
reported in the Table 3.5 from Section 3.3.4.

Table 4.7: Validation results on the ISPRS Vaihingen using SegNet trained on the DSM and nDSM (F1
scores and global accuracy).

Input Imp. surfaces Buildings Low veg. Trees Vehicles Accuracy

nDSM 78.57 93.16 55.86 83.80 32.29 80.53
DSM 77.94 92.69 56.57 84.15 60.60 80.29

nDSM + DSM 77.67 93.47 55.93 84.01 28.39 80.30

It seems that learning from a digital surface model alone can result in high F1 scores on
roads, buildings and trees. These classes are indeed the simplest to separate based on the
height information given by the Lidar data: buildings are large homogeneously elevated
surfaces, trees are moderately elevated objects with a high local entropy and the ground is
a large plane with a low slope. It is interesting to see that the model learns a spatial prior
regarding how low vegetation is distributed in the city. It is randomly placed around trees in
order to create “green” areas that correspond to the small parks and vegetalized decor of a
small town. In addition, vehicles can be predicted with a moderate accuracy from the DSM.
However there are harder to predict based on the nDSM since the normalization process
flattens the ground and makes most cars disappear.

To conclude, although there is some information to be extracted from the digital surface
models, the overall accuracy is significantly lower than the one obtained using the IRRG
images.
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4.3.2 Building a composite image

As previously detailed, digital surface models alone are not enough to map the diversity
of objects we are interested in over urban areas. The information is not rich enough to
discriminate low vegetation from impervious surfaces or smaller vehicles that disappear in
the nDSM.

To encompass all classes we need not only the height but also some kind of color in-
formation. The NDVI is a vegetation index defined as the normalized ratio between the
near-infrared and the red intensities:

NDVI =
IR−R
IR + R

. (4.3)

The NDVI is bounded in [−1,+1], −1 means that there is no vegetation while +1 means a
high vegetation density. NDVI is effective as it models that reflection peak of the vegetation
in the near-infrared and its absorption peak in the red wavelength due to chlorophyll in the
leafs. Therefore NDVI characterize the presence and the density of vegetation in the observed
area [42]. NDVI also can used to detect artificial structures when it is close to −1 [52].

We design a composite 3-channels image agregating the DSM, nDSM and NDVI as
pictured in the Fig. 4.10.

Table 4.8: Validation results on the ISPRS Vaihingen dataset using a SegNet model trained on
composite images (with and without ImageNet pretraining).

Input Transfer Imp. surfaces Buildings Low veg. Trees Vehicles Accuracy

Composite 7 91.39 95.02 75.68 88.66 61.86 89.07
Composite X 91.34 95.48 76.47 89.39 73.47 89.61

IRRG X 91.43 95.37 79.97 90.53 90.41 90.47

Table 4.9: Validation results on the ISPRS Potsdam dataset using a SegNet model trained on composite
images (with and without ImageNet pretraining).

Input Transfer Imp. surfaces Buildings Low veg. Trees Vehicles Accuracy

Composite 7 89.81 96.72 79.04 80.55 87.60 87.87
Composite X 90.81 97.23 80.89 81.17 92.47 89.20

RGB X 92.35 97.62 85.18 87.19 96.11 91.22

Results obtained using a SegNet trainined on the composite DSM/nDSM/NDVI images on
the ISPRS Vaihingen and Potsdam datasets are reported in the Tables 4.8 and 4.9 respectively
(cf. Table 4.7). In addition we tried models with and without ImageNet pretrained weights
from VGG-16. Although pretraining outperforms initializing the weights from scratch on
all classes, the overall accuracy never reaches the one we obtained when training SegNet
directly on the IRRG images.

We show in Fig. 4.11 some predictions obtained by SegNet when trained respectively
on IRRG and composite tiles. The first mask contains only 12% wrong pixels while the
second contains about 13% wrong pixels. While comparable, the two error masks are
complementary: errors do not occur on the same pixels. Each of the two inputs gives
information about different parts of the image. Were we able to perfectly combine the two
maps so that only pixels that are wrongly classified by both models are wrong, the error rate
would drop to 7% on this example (yellow mask). This motivates the study of multimodal
learning for data fusion in deep neural networks, which is the topic of the next chapter.
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(a) IRRG image (b) IRRG prediction

(c) Composite prediction (d) Error mask

Figure 4.11: Differences between the predictions from the IRRG and composite models. (b),(c) Colors:
white: roads, blue: buildings, cyan: low vegetation, green: trees, yellow: vehicles, red: clutter.
(d) In lime green we show the errors of the model trained on the composite data, in dark green the
errors of the model trained on the IRRG data and the intersection of both masks in yellow.

The works presented in this chapter have been published in international conferences:

• Amina Ben Hamida et al. “Deep Learning for Semantic Segmentation of Remote
Sensing Images with Rich Spectral Content”. In: 2017 IEEE International Geo-
science and Remote Sensing Symposium (IGARSS). July 2017, pp. 2569–2572. doi:
10.1109/IGARSS.2017.8127520

• Nicolas Audebert, Bertrand Le Saux, and Sébastien Lefèvre. “Semantic Segmen-
tation of Earth Observation Data Using Multimodal and Multi-Scale Deep Net-
works”. In: Computer Vision – ACCV 2016. Springer, Cham, Nov. 20, 2016,
pp. 180–196. doi: 10.1007/978-3-319-54181-5_12

• Nicolas Audebert et al. “A Real-World Hyperspectral Image Processing Pipeline
for Vegetation and Hydrocarbon Characterization”. In: Proceedings of the 9th
Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing
(WHISPERS). Sept. 2018

Two of these conference publications have been extended into journal articles:

• Nicolas Audebert, Bertrand Le Saux, and Sébastien Lefèvre. “Beyond RGB: Very
High Resolution Urban Remote Sensing with Multimodal Deep Networks”. In:
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“I can see nothing,” said I, handing it back to my friend.
“On the contrary, Watson, you can see everything. You fail, however, to reason from
what you see. You are too timid in drawing your inferences.”

— Arthur Conan Doyle (The Adventure of the Blue Carbuncle, 1892)
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Summary:

In the previous chapters, we pushed further the state of the art in semantic
segmentation of remote sensing images based on the most common optical

sensors deployed for Earth Observation. However we also noted that digital surface
models derived from Lidar data were not enough to perform a comprehensive
semantic mapping.

In this chapter, we investigate data fusion techniques to combine information
extracted from heterogeneous sensors. More specifically, we introduce several multi-
modal deep learning architectures that are able to learn jointly from optical images
and digital surface models. We validate succesfully these models on several public
datasets and show that it is indeed possible to leverage the specific strengths of
multiple sensors inside one model.

We then extend these works to non-physical data inputs. Especially we apply
the same data fusion architectures to existing geographical knowledge coming from
online crowdsourced databases to reinforce the semantic maps generated by the
model. We process this ancillary information as a virtual sensor that we feed to our
previously developed multimodal architectures to inject prior knowledge in the
learning and inference processes of our neural networks.
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5.1 Multi-modal learning

5.1.1 Neural networks for multi-modal learning
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Figure 5.1: Examples of deep networks with a multi-modal architectures.

The deep networks that we have worked with until now were mono-modal and processed
a unique input. However the human sensory perception leverages multiple modalities,
notably sound and image, that interact and complement one another. This questions the
ability of the machine to mimick to behaviour by learning from multiple data sources that
can exhibit heteregeneous shapes and proprties, with partial redondancies.

This topic relates to multi-modal learning and is far from specific to remote sensing.
Representation learning from heterogeneous signals is a large research field. Baltrušaitis,
Ahuja, and Morency [5] introduced the following taxonomy that defines joint representations
(one representation for multiple modalities) or synchronized (every modality has its own
representation, orchestrated and combined at a higher level):

• Repreentation: generating features that leverage the complementarity and redondancy
of multiple modalities.

• Translation: converting from one modality to another.

• Alignement: finding correspondancies between the representations of several modali-
ties.

• Fusion: including multiple modalities in the decision process.

A model able to summarize visual and sound information to label video sequences could
be implemented in various ways. A first implementation would rely on extracting separate
features for sound and image and then use a classifier that processes the concatenation of
both features (fusion). Another implementation could add an explicit constraint on the audio
and visual features to enforce similarity of audio and image frames at the same timestamp
(alignment) using a distance penalty. On the opposite, one modality can be used as reference
for domain adaptation algorithms that would project the audio features into the image latent
space, or conversely (translation). Finally, instead of working with separate representations,
it is possible to directly learn on the full video data without separating its two modalities to
generate a unique multi-modal feature (representation).

Many tasks are related to multi-modal learning: automatic image captioning [18], video
classification [19] or activaty recognition based on wearable trackers [32]. Many multi-
modal datasets have been published for a large diversity of tasks: image captioning [14],
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medical prognosis based on multiple scanners [27], action recognition in images and 3D
data [31], emotion detection and recognition in videos [35], even alongside heartbeat and
neural measurements [34].

One of the first multi-modal method designed for data fusion looked into the so-called
“late” fusion which intervenes only at the classification stage. In its simplest expression,
one statistical model is learnt for each modality and specific combination algorithms are
used to create a multi-modal ensemble of models. A simple ensemble can, through a linear
combination or a majority vote, take into accounts all data, as heterogeneous they may
be. This is the approach from Yuhas, Goldstein, and Sejnowski [44] and Meier, Hürst, and
Duchnowski [26] for automatic syllable recognition in videos. These techniques are also
found in recent literature on video processing, e.g. [30] use a hidden Markov chain for
automatic speech recognition.

However the true strength of deep learning is the expressiveness of learnt representations.
Therefore [29] investigated the design of an autoencoder bi-modal DBN for sound and image
data. Two parallel encoders process each channel separately and converge into a shared
representation. Two decoders are tasked to reconstruct each modality based on the same
representation as illustrated in the Fig. 5.1a. An intersting idea in this design is that the
shared representation can be used to alleviate the loss of an input. For example their model
can be used to infer a phonem based on the image only, or the sound only. Srivastava and
Salakhutdinov [41] introduced a similar architecture built using deep Botlzmann machines
that can be applied to videos, but also to very heterogeneous data such as images (raw data)
and descriptive labels (symbolic language). This model allows them to infer one modality
from the other when it is missing. More recently, Simonyan and Zisserman [38] introduced
dual-stream networks for action recognition in videos based on sound and image modalities.

The democratization of robust, reliable and moderately cheap RGB-D sensors (such as
the Kinect camera) motivated the computer vision community to look into the RGB color
image and depth map data fusion, i.e. to 2.5D image processing. Although one could simply
concatenate features from pretrained models applied on both color and grayscale images to
generate artificial multimodal features [36, 20], it seems more effective to find a way to learn
automatically an efficient joint representation that leverages complementarities between the
inputs. Eitel et al. [8], Guo, Wang, and Chen [11], and Song, Jiang, and Herranz [40] have
been inspired by the multi-modal autoencoder from Ngiam et al. [29] and introduce two
parallel CNN that extract features fused in a joint vector by the last layers. This allows them
to directly classify RGB-D images using an end-to-end model that does not separate depth
and color data. This architecture is illustrated by the Fig. 5.1b. In practice there are two
AlexNet models trained in parallel to extract features from the RGB image and the depth
map encoded in a 3-channels image. The features extracted by the convolutional part of both
AlexNets converge using the same technique as Ngiam et al. [29]: they are merged in a fully
connected layer and fed to a multilayer perceptron that performs the classification. This
approach improves the accuracy of convolutional classifiers compared to working on the
RGB image alone. Indeed the depth information introduces geometrical information useful
to determine semantics but also reduces the impact of occlusions.

The FuseNet architecture introduced by Hazirbas et al. [12] is the logical extension of this
architecture to semantic segmentation. Applied on RGB-D images, FuseNet is a variant of
SegNet [4] that we already detailed in the Chapter 3. Two encoders perform a dense feature
extraction on the color image and the depth map encoded on 3 channels. A unique decoder
performs simultaneously both the upsampling and the dense pixel-wise classification. This
architecture improved the state of the art on the SUN RGB-D datase dataset, dedicated to
semantic segmentation of 2.5D indoor images. Guerry, Le Saux, and Filliat [10] also obtained
state of the art performance for person detection in RGB-D images using bi-modal learning
strategies where both encoders exchange information from the two modalities. Finally, Lee,
Park, and Hong [21] suggested an enhancement to FuseNet by introducing residual learning
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5.2. Model fusion

inside the network, once again increasing the accuracy on the SUN RGB-D dataset.
An interesting observation stemming for this short review of the state of the art is that

RGB-D classification models all process separately color and depth information. Indeed, as
we have seen for multispectral data, leveraging ImageNet (and therefore color) pretrained
models generally outperforms training from scratch. Concatenating the depth map to the
color image to form a 4-channels tensor that would be fed to the model seems to result in
worse results than using this dual-stream approach1.

5.1.2 Multi-modal learning in remote sensing

Working with digital surface models to improve classifier accuracy in remote sensing is not a
novel research topic and has been investigated in the past. It is quite close conceptually to
2.5D RGB-D image processing, as DTM plays a role similar to the depth maps.

Nonetheless most works published before this thesis have employed ad hoc fusion strate-
gies. For example, Lagrange et al. [20] simply concatenate features extracted by multiple
deep networks to train an SVM classifier and so do Paisitkriangkrai et al. [33] with random
forests and expert features. More recently, Liu et al. [23] used the same features but fed them
to a CRF graphical model in order to combine semantic maps inferred by a FCN, digital
surface model and NDVI.

In this manuscript we look into deep learning end-to-end approaches that do not rely on
graphical models or expert features. We will begin optical/digital surface model fusion and
later move on to the integration of prior geographical knowledge.
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Figure 5.2: FuseNet architecture [12].

5.2 Model fusion

5.2.1 Learning-based fusion

The FuseNet [12] architecture is a multi-modal SegNet variant, as illustrated by Fig. 5.2.
FuseNet encodes simultaneously the RGB image and the depth map using two identical

1Or at least it would seem in the state of the art. Preliminary experiments tend to confirm this, yet few papers
have published negative results on this matter.
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Chapter 5 Multi-modal semantic segmentation

encoders. The intermediate feature maps from the depth encoder are added to the feature
of the color encoder after each convolutional block. A unique decoder then performs the
upsampling and classification. This approach can adapted to many other CNN, such as
ResNet.

Formally, let P̂ denote the prediction function modeled by FuseNet applied to an image I
and a depth ∆. Let D be the decoder and EI

i ,E
∆
i the outputs of the ithencoding block for the

image and depth, and Bi the operation corresponding to the ithblock. Then:

P̂(I,∆) =D
(
EI

5(I,∆)
)

(5.1)

where  EI
i+1(I,∆) = BI

i

(
EI
i + E∆i

)
E∆i+1(∆) = B∆i (E∆i )

(5.2)

In our case, we can modify FuseNet in the same way we altered SegNet in the previous
chapter to process remote sensing images. Indeed a heigh map such as the DSM can be
processed as a depth map associated to a RGB color image. Therefore we suggest to adapt
FuseNet to multi-modal remote sensing image processing. In practice we will use as inputs
RGB or IRRG optical images and the composite images built in Section 4.3.2.

⊕convn (aux) convn (main)

convn−1 (aux) convn−1 (principal)

(a) FuseNet: auxiliary activations are added to the
main stream.

⊕convn (aux) convn (main)

convn−1 (aux) convn−1 (main)

convn−1 (virtual)

(b) V-FuseNet: activation from both streams are fused
using a residual convolutional block.

Figure 5.3: Fusion strategies for the FuseNet architecture.

However the FuseNet architecture considers the depth data as auxiliary. Indeed the two
streams in the encoder are not symetrical: the depth stream only process depth information
while the color stream learns a joint RGB-D representation. Moreover the decoder upsamples
the feature maps based on the indices from the main stream, i.e. the optical data. This means
that we need to choose an input that will act as the main stream and the other will act as the
auxiliary stream (cf. Fig. 5.3a). There is an unbalance between the way the two modalities
are processed. We suggest here a symetrical alternative that balance the FuseNet model by
introducing a virtual third source.

Insteaad of adding up activation maps, we use a learnable fusion block that encode a
multi-modal representation of the features. We introduce a third encoder that does not match
any actual modality but only serves as a proxy for the joint multi-modal representation. After
the nthencoding block, the virtual encoder concatenate the feature maps from both actual
encoders and feeds them to a residual convolutional block that extracts the joint multi-modal
features. These features are the ones that are finally upsampled and classified in the decoder.
This process is detailed in the Fig. 5.3b. This strategy makes FuseNet symetrical and removes
the need to choose a “main” data source. In the taxonomy defined by Baltrušaitis, Ahuja, and
Morency [5], this matches a switch from an alignment method to a representation-based one.
This architecture is denoted V-FuseNet in the rest of this chapter.
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5.2. Model fusion

Another drawback of the FuseNet architecture is that it requires topologically compatible
models, i.e. networks with similar computational graphs so that the activations can be
summed in the encoder. This is not always true, especially if the inputs were to have very
different natures, such as a 2D image and 3D point cloud. Here, the depth map can be
resampled at the same resolution as the color image. These matching encoders might waste
weights, especially if one data source is less rich in information than the other. Therefore,
we also introduce a late fusion strategy that could learn from any kind of input using
heterogeneous models. It is based on a late fusion paradigm instead of the multi-modal
representation learning.

5.2.2 Residual correction
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Figure 5.4: Residual correction applied to SegNet.

An alternative approach to the fusion problem consists in processing separately both
modalities and combine the set of predictions inferred by the model ensemble. We can,
for example, train one deep network per data source and then average the output maps.
However this fusion scheme does not really take into account the specificities of the sensors.
We introduce a trainable residual correction module that takes as inputs the last feature
maps from the single-modality networks and learns to fuse the probability maps [1]. The
residual correction module learns a correction ε that is applied to the average prediction to
increase the overall accuracy of the model ensemble. This process is detailed in the Fig. 5.4
on the SegNet architecture.

This module performs a decision-level fusion using the residual learning principle [13]. It
consists in three convolutional layers with 3× 3 kernels and 1 px padding. The intermediate
activation maps coming out from the two SegNet decoders are concanetated and fed as an
input to the correction module (cf. Fig. 5.4). The model output is summed in a residual
fashion with the average of the two predictions comig from the SegNet models, as shown in
the Fig. 5.5. Residual learning is well-suited to this work since the averaged maps should be
already quite close to the expected result. The additional module fuses the decisions using
an adaptive weighting that depends on the activation maps and compute an corrective term
to apply on the average prediction to shift it towards the ground truth. The fusion network
is trainable using backpropagation and can be trained end-to-end with to the two networks,
or more simply in our case by posterior fine-tuning with frozen models. The latter allows
for a very fast training since gradients are computed only for the fusion module. Training
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Figure 5.5: Residual correction module.

the whole model ensemble end-to-end can be costly as it requires to store SegNet twice
plus the small residaul correction module, which is not always possible on all GPUs. This
multi-modal SegNet using residual correction is denoted SegNet-RC in the rest of the section.

Let Pgt be the ground truth tensor and P̂i be the predictions of the ithmodel. We define
the error εi as:

P̂i = Pgt + εi avec |εi | � |P̂i | . (5.3)

If the prediction Pi is close to the ground truth, then εi has a low magnitude. The goal of
the residual correction module is to approximate this error to correct it during inference.

Let n be the number of predictions to fuse using residaul correction. Then the module
output, noted P̂∗, is the sum of the average predictions from the P̂i and a corrective term c:

P̂∗ = P̂average + c =
1
n

n∑
i=1

Pi + c = Pgt +
1
n

n∑
i=1

εi + c . (5.4)

Since the residual correction module is trained to minimize its cost function, it actually
comes to: ∥∥∥P̂∗ − Pgt

∥∥∥→ 0 (5.5)

which can be interpreted as a constraint on c and εi :∥∥∥∥∥∥∥1
n

n∑
i=1

εi − c

∥∥∥∥∥∥∥→ 0 . (5.6)

Another way to frame this is to consider the residual correction module as a way to
compensate for the average error of the model ensemble. During the training phase, the
ground truth Pgt is known. The module weights are optimized by backpropagation so the
correction c gets close to 1

n

∑n
i=1 εi . As we expect the average error to be small, the error

correction actually matches the residual learning paradigm [13]. Indeed, c is an additive term
of small magnitude added to the initial signal using a bypass. This approach is schematized
in the Fig. 5.5.

5.2.3 Experimental results

As expected both fusion schemes improve the classification accuracies on the two datasets, as
illustrated in the Figs. 5.6a and 5.7. Detailed quantitative results are reported in Tables 5.1
to 5.3. As in the Chapter 3, using ResNet-34 as a base model in place of SegNet does
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Table 5.1: Multi-modal semantic segmentation results on the ISPRS Vaihingen validation set.

Model Accuracy F1 score

SegNet (IRRG) 90.2± 1.4 89.3± 1.2

SegNet (composite) 88.3± 0.9 81.6± 0.8

SegNet-RC 90.6± 1.4 89.2± 1.2

FuseNet 90.8± 1.4 90.1± 1.2

V-FuseNet 91.1± 1.5 90.3± 1.2

ResNet-34 (IRRG) 90.3± 1.0 89.1± 0.7

ResNet-34 (composite) 88.8± 1.1 83.4± 1.3

ResNet-34-CR 90.8± 1.0 89.1± 1.1

FusResNet 90.6± 1.1 89.3± 0.7

Table 5.2: Multi-modal semantic segmentation results on the ISPRS Vaihingen test set (multi-modal
approaches). Best results are in bold and second best are in italics.

Model Roads Buildings Low veg. Trees Vehicles Accuracy

FCN+CRF + contours + fixed

nDSM [25]

92.4 95.2 83.9 89.9 81.2 90.3

SegNet (IRRG) 91.5 94.3 82.7 89.3 85.7 89.4
SegNet-RC 91.0 94.5 84.4 89.9 77.8 89.8

FuseNet 91.3 94.3 84.8 89.9 85.9 90.1
V-FuseNet 91.0 94.4 84.5 89.9 86.3 90.0

not significantly improve the performances and the gain is not justified compared to the
additional computational burden. The Fig. 5.6 shows several objects that have been wrongly
classified based on the optical image alone, for which the multi-modal learning including
the composite data generates correct maps. For example, in the Figs. 5.6a and 5.6b, the
SegNet model is not able to separate between the classes “impervious surface” and “building”.
Indeed the roof of the parking garage is used an open-air parking lot and is visually similar
to usual parking lots (cars, white markings on the ground). FuseNet is able to leverage the
nDSM to choose the “building” class but completely ignore the vehicles. In the meantime the
residual correction preserves part of the spatial information of the “cars” class. This is similar
to the Fig. 5.6c in which SegNet confuses roads with buildings and low vegetation with trees
while both fusion strategies predict accurately the various objects, mainly thanks to the
nDSM. Overall it seems that FuseNet multi-modal encoding scheme results in multi-modal
internal representation that use less parameters than the residual correction of a model
ensemble and converge to an overall better accuracy. On the opposite the late fusion using
residual correction mostly increases the classification metrics on the “impervious surfaces”
and “buildings” classes with a smaller overall impact.

Yet, a practical strength of the residual correction is that it learns to combine predictions
based on the activation magnitude. In the Fig. 5.6b, we show an example of successful fusion
in which the confusion of the model in IRRG around the cars is compensated for by the high
confidence in the “building” class of the composite model.

The FuseNet architecture learns a joint representation of the two inputs but doing
so, it becomes more sensitive to the overfitting that plagues SegNet and deep models in
general. Rare occurrences such as cars on top of a buildings are ignored. The multi-modal
representation from the dual stream encoders perform better overall but FuseNet might
also incorporate more of the instrinsic dataset bias, where the residual correction was able
to correct errors even on those edge cases. Late fusion is therefore more relevant when
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Table 5.3: Multi-modal semantic segmentation results on the ISPRS Potsdam test set (multi-modal
approaches). Best results are in bold and second best are in italics.

Model Roads Buildings Low veg. Trees Vehicles Accuracy

FCN + CRF + expert features [23] 91.2 94.6 85.1 85.1 92.8 88.4
FCN [37] 92.5 96.4 86.7 88.0 94.7 90.3

SegNet (IRRG) 92.4 95.8 86.7 87.4 95.1 90.0
SegNet-RC 93.3 97.3 87.6 88.3 95.8 91.0

FuseNet 93.0 97.0 87.3 87.7 95.2 90.6
V-FuseNet 93.2 97.2 87.9 88.2 95.0 91.0

one needs to combine complementary predictions and acts more a stronger adapatively
weighted average scheme. On the parking garage, the composite SegNet predicts a building
with confidence because the nDSM is very reliable, while the RGB SegNet produces high
confidence predictions on cars but mixed predictions around them because the spatial context
is ambiguous. On the contrary, FuseNet overfits on the “cars are on roads” prior and vehicles
disappear completely at test time, because this is an unique case in the dataset on which the
model was not able to generalize to. To conclude, both fusion strategies can be applied but
not for the same purpose. Late fusion using residual correction is more useful to combine
complementary strong classifiers, while the FuseNet strategy is more suited to leverage
ancillary information in the learning process. On the final test set from the Vaihingen dataset
(cf. Table 5.2), the V-FuseNet strategy has marginally better accuracies compared to the
original FuseNet. However let us stress that the F1 scores are significantly higher on several
classes, especially the “clutter” class (+1,7%) which is not taken into account in the overall
accuracy. On the ISPRS Potsdam dataset, V-FuseNet slightly outperforms FuseNet both
class-wise and overall.

Robustness to missing data

The multi-modal architectures we introduced allow us to benefit from various georeferenced
and co-registered images. However they also add some new constraints regarding data
availability. Indded despite the high density of the Lidar point cloud published alongside
the ISPRS dataset, the normalization used to generate the height map is not perfect and there
are some remaining artifacts. More specifically, Marmanis et al. [25] identified that several
buildings have disappeared innDSM, as the corresponding pixels have been asigned a height
of 0 m. This provokes significant classification errors for both fusion methods as illustrated
in the Fig. 5.8. One solution, suggested by [25], consists in manually fixing the nDSM but this
does not scale on very large datasets. Robust multi-modal techniques to deal with noisy or
even missing data could help solve problem, for example based on hallucination networks [15]
to generate the missing information [17]. Alternatively, recent works on generative models
could also help reduce overfitting and improve the overall robustness of the models by
training them on noisy synthetic datasets [43].
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IRRG image Ground truth SegNet FuseNet SegNet-RC

(a) Predictions from various models on a sample tile of the ISPRS Vaihingen dataset.

SegNet IRRG
(confidence,
buildings)

SegNet IRRG
(confidence, roads)

SegNet IRRG
(confidence, cars)

SegNet composite
(confidence,
buildings)

SegNet composite
(confidence, cars)

(b) Confidences maps from SegNet for several classes based on the input source.

IRRG image Ground truth SegNet FuseNet SegNet-RC

(c) Predictions from various models on a sample tile of the ISPRS Vaihingen dataset.

Figure 5.6: Samples of successful multi-modal predictions on Vaihingen.
Colors: white: roads, blue: buildings, cyan: low vegetation, green: trees, yellow: vehicles, red: clutter.
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(a) RGB image (b) Composite image (c) Ground truth

(d) SegNet (e) V-FuseNet

Figure 5.7: Impact of the fusion strategy on a sample tile of the ISPRS Potsdam dataset. Confusion
between roads and buildings is greatly reduced thanks to the digital surface models.
Colors: white: roads, blue: buildings, cyan: low vegetation, green: trees, yellow: vehicles, red: clutter.

IRRG nDSM SegNet-RC V-FuseNet

Figure 5.8: Errors in the nDSM are mishandled by both fusion methods on the ISPRS Vaihingen
dataset. In this case an entire building is erased from the map.
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5.3 Learning from prior knowledge

In the previous section we introduced deep multi-modal architectures that could be trained
using heterogeneous sensors. However geospatial data are not always acquired by physical
means. There are multiple semantic knowledge databases, backed by institutions, non-profit
or companies, containing geographical information that could be helpful for automated
cartography.

5.3.1 OpenStreetMap

OpenStreetMap (OSM) is a free crowdsourced GIS managed by volunteers who contribute
their time to map locations that they are familiar with. Contributors to OpenStreetMap
(OSM) can use an online editor to annotate georeferenced maps by adding or updating
semantic nodes related to the road network, building footprints, parks, forests, rivers etc.
In addition to these manuel edits, the OSM community pulls data from official sources
such as the French “cadastre” to automatically update the boundaries of administrative
geographical entities or to generate new up-to-date building footprints. OSM is the largest
online geographic database under a free and open license. It regroups a large ontonlogy of
geographic objects and entities from highways to leisure parks, churches, cimeteries and
agricultural lands.

Surprsingly few works have looked into using OSM data for machine learning since the
website opened in 2004. In most cases OSM is used as a target ground truth for roads and
buildings detection [28, 24] in a supervised learning setting or sometimes for automatic
registering of satellite images [42]. Isola et al. [16] investigated automatic generation of
OSM tiles using satellite data but only for visualization purposes, without any accuracy
assessment. Yet OSM contains extremly and diversified data that could help extracting
abstract knowledge. Chen and Zipf [6] designed active learning strategies to automatically
detect objects that were not annotated in OSM but existed in the images to suggest fixes to
contributors. Danylo et al. [7] used random forest classifiers on various OSM data layers to
predict local climactic zones, while Geiß et al. [9] used OSM data to detect areas prone to
natural disasters.

In this section we suggest to use the semantic knowledge contaiend in OSM as an input
for a semantic segmentation deep network. The idea is to leverage the semantic knowledge,
even if noisy or partial, from OSM to extract richer information at a higher resolution by
combining OSM and VHR optical data. Indeed this approach goes further than the usual
mapping image→ OSM. On the contrary we want here to combine multiple data sources in
a multi-modal learning setting and whether data are images or GIS does not matter.

To do so we will use the ISPRS Potsdam dataset. In addition to the existing images tiles,
we also collect the relevant OSM from 2017. We select the layers corresponding to the roads,
the building footprints, water bodies and urban vegetation (mostly parks). Roads are defined
in OSM as a collection of linear elements. During rasterization, we assign to each segment a
fixed width depending on the road type ('3.5 m for each lane in an urban area). Moreover
buildings, greenways and water bodies do not necessarily correspond completely to the aerial
images from the dataset, either because they have been built recently (images were acquired
in 2014, OSM data in 2017) or because the OSM data is simply incomplete. We generate a 2D
raster with the same resolution than the RGB images, with 4 binary channels: a road mask, a
building mask, a water mask and a “green” (green infrastructure, greenways, forests) mask.

5.3.2 Prior knowledge as a virtual sensor

The core of our approach consists in processing OSM data as a virtual sensor, i.e. a new data
input that complements the optical images we have at hand. The raster generated from OSM
data is an incomplete information but we expect it to facilitate the training process since
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RGB image OSM tile OSM raster Ground truth

Figure 5.9: Tile #4_12 from the ISPRS Potsdam dataset and corresponding OSM data.
Colors: white: roads, blue: buildings, cyan: low vegetation, green: trees, yellow: vehicles, red: clutter.

there is a significant overlap with the ground truth. It should be beneficial to the network
to learn how to find buildings and roads not on the optical image alone, but on both data
sources to rely on the already existing OSM annotations. Less weights will be required to find
buildings from scratch, and the newly freed parameters will be available for harder cases.
Instead of performing of a full segmentation of the whole image, the model will be able to
locally enrich the existing geopgrahical knowledge based on the color images, contrasting
with the usual pipeline. Therefore we apply the FuseNet and residual correction multi-modal
learning strategies on our two inputs: optical images and rasterized OSM layers.

If the classes of interest we are looking for in the segmentation ground truth are already
annotated in the OSM data (e.g. buildings and roads), it is feasible to use those as a first
approximation of the ground truth. It will then be possible to refine them to correct small
inaccuracies due to OSM contributors or even predict missing classes and objects. This
process is similar to residual learning, but first and foremost to the refining networks
from [22], both known to improve the performance of CNNs and FCNs classifiers.

In our case we use a simple FCN using one convolutional block from the VGG-16 [39]
model to convert the OSM raster into a semantic map approximating the expected ground
truth. This model is denoted OSMNet. The color images are processed using an FCN based
on the SegNet architecture [4] following the approach designed in Chapter 3. We use these
two models to generate an average prediction map by combining both inputs. In that case,
if I is the input colour image, O the OSM raster, P̂image the SegNet prediction function and
P̂OSM the OSMNet prediction function, then the average prediction function P̂ is obtained by:

P̂(I,O) =
1

α+ β
(α · P̂image(I) + β · P̂OSM(O)) . (5.7)

Since OSM already contains a significant part of the expected information, we expect that
P̂OSM(O) is a close approximation of the ground truth Pgt. P̂image can be written as a refining
function [22]: ∥∥∥ P̂image(I)

∥∥∥ ∝ ∥∥∥Pgt − P̂OSM(O)
∥∥∥� ∥∥∥Pgt

∥∥∥ . (5.8)

Moreover this can also be rewritten as a residual correction module C. Indeed, given
Eq. (5.4), the prediction P̂∗ after residual correction is:

P̂∗(I,O) = P̂(I,O) + C
(
Zimage,ZOSM

)
, (5.9)

where Zimage and ZOSM are the last feature maps from SegNet and OSMNet respectively.
In this pipeline the residual learning process is used to model a corrective signal to be

added to the average prediction, as illustrated in Fig. 5.10. The refined OSM map is then
refined again by the residual learning process in a two-steps iterative correction.

Similarly, we can apply the FuseNet architecture on I and O, i.e. the colour image and
the virtual OSM sensor. This requires that both encoders from SegNet and OSMNet have
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Figure 5.10: Residual correction applied to SegNet and OSMNet.

Table 5.4: Multi-modal semantic segmentation using the OSM prior on the ISPRS Potsdam dataset
(class-wise F1 scores and overall accuracy).

Method Imp. surfaces Buildings Low veg. Trees Vehicles Accuracy

RF IRRGB 77.0 79.7 73.1 59.4 58.8 74.2
SegNet RGB 93.0 92.9 85.0 85.1 95.1 89.7

RF IRRGB+OSM 85.6 92.4 73.8 59.5 67.6 80.9
RC RGB+OSM 93.9 92.8 85.1 85.2 95.8 90.6

FuseNet 95.3 95.9 86.3 85.1 96.8 92.3

identical graphs to ensure compatible shapes when summing the activation tensors during
fusion, as explained in the Section 5.2.

5.3.3 Multi-modal architecture for geographic knowledge

We use the ISPRS Potsdam dataset for which we download the relevant OSM data (cf. Fig. 5.9).
Seeing that the tiles embed geographic coordinates, we can generate the corresponding OSM
rasters comprised of the roads, buildings, vegetalized areas and water bodies footprints
using the Maperitive software2. We use a 3-fold cross-validation of the dataset to validate
empirically our findings.

Experimental validation

Once again we reuse the hyperparameters described in the Chapter 3. Results from the
multi-modal models are compared to a baseline using a random forest (FR) on the image after
superpixel segmentation. The baseline use histograms of oriented gradients and histograms
of colors as image features and the histogram of classes as OSM feature.

Results obtained by cross-validation on the ISPRS Potsdam dataset are reported in the Ta-
ble 5.4. We report metrics defined in the Section 3.3, i.e. the overall accuracy and F1 score for
each class on the eroded ground truth.

As expected the inclusion of OSM data significantly improves the classification accuracy,
especially on roads and buildings which benefit the most from the geographical information.

2http://maperitive.net/

128

http://maperitive.net/


Chapter 5 Multi-modal semantic segmentation

(a) RGB image (b) OSM data (c) Ground truth

(d) Prediction (SegNet RGB) (e) Prediction (FuseNet RGB+OSM)

Figure 5.11: Segmentation sample on a tile from the ISPRS Potsdam dataset including the OSM
information. Errors on buildings are significantly reduced.
Colors: white: roads, blue: buildings, cyan: low vegetation, green: trees, yellow: vehicles, red: clutter.

Indeed this additional information (whether or not an OpenStreetMap contributor annotated
the area as a building) can remove ambiguities harder to understand based on the visual
appearance alone. Moreover it is interesting to see that even classes that not directly repre-
sented in OSM such as the various vegetation types and the cars can also benefit from the
additional contextual information.

In addition, including OSM data in the learning phase also speeds up the training. On the
same dataset, SegNet trained using a refinement strategy from OSM requires approximately
25% less iterations to converge than the usual SegNet RGB. Moreover the local minima it
reaches is better, with a loss function at 0.39 instead of 0.45 for the same accuracy. Finally,
using the OSM data generally gives more consistent outputs that have a clearer spatial
structure as pictured in Fig. 5.12.

To summarize, it seems that FCNs can be adapted to the multi-modal learning pardigm.
Especially we showed in this chapter that it is possible to leverage multiple input data
sources, either coming from heterogeneous sensors or from knowledge GIS databses. The
multi-modal information enhance the inference capabilities of the models both on qualitative
and quantitative aspects on the two datasets we worked with. Finally, the multi-modal
learning and data fusion strategies that we introduced can address various obstacles that one
can encounter when applying machine learning for Earth Observation.
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Model generalization

I see no limit to the capabilities of machines. As microchips get smaller and faster, I
can see them getting better than we are. I can visualize a time in the future when we
will be to robots as dogs are to humans.

— Claude Shannon

Contents
6.1 Synthetic data generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.1.1 Generative adversarial networks . . . . . . . . . . . . . . . . . . . . 137

6.1.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.1.3 Spectrum analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.1.4 Data augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.2 Scalability to large-scale datasets . . . . . . . . . . . . . . . . . . . . . . . 143
6.2.1 Scene diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.2.2 MiniFrance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Summary:

The generalization of deep models trained on a given ground truth to new ac-
quisitions is the key for large-scale application of deep learning for Earth

Observation. Indeed there exists a large diversity of ecosystems and environments,
both in terms of time and space, that might limit the scope of the trained models on
a handful of local scenes. Two problems arise from this statement.

On the one hand, we know that creating a ground truth on some sensors can
be both difficult and expensive, for example on hyperspectral data that requires
expert knowledge. Yet statistical models trained on small datasets are prone to
overfitting that is at opposed to the desired goal of generalizability. For this reason
we start by investigating how one can create new synthetic training samples that
might alleviate the scarceness of real labeled data.

On the other hand, remote sensing data is abundant and extremely diverse.
This rises questions whether the deep networks we worked with in the previous
chapters can scale on such massive datasets. A simplified version of this problem
consists on trying to transfer the knowledge from a model trained on a given scene
to another. We perform some transfer learning experiments between the ISPRS
Potsdam and Vaihingen datasets to evaluate how pretrained models can generalize
on new acquisitions that are weakly labeled – or even not labeled at all. Finally
we introduce a new large-scale labeled remote sensing data called MiniFrance, the
largest based on public data as far as we know. It recoups aerial images on 16
conurbations in France along with land cover and building footprints annotations.
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6.1. Synthetic data generation

6.1 Synthetic data generation

As we have seen in the Chapter 4, the current labeled hyperspectral datasets are rare and
of small sizes. Labeleing hyperspectral images is hard and because of the low spatial
resolution of the sensor, acquisitions tend to be small which makes building a large-scale
annotated hyeprspectral dataset pretty much impossible. There are laboratory spectrum
measurements, such as the United States Geological Survey (USGS)1 database but those are
nearly impossible to use because the sensors used are different, not calibrated the same way
and more importantly the acquisitions have not been performed in the same experimental
conditions compared to remote sensing. Therefore as gathering more real data is not an
option, one could be interested on augmenting the data at hand.

Data augmentation consists in introducing fake synthetic samples to enlarge the size
of a training set [8]. This practice is very common when training deep neural networks
and especially CNN since the seminal work of Krizhevsky, Sutskever, and Hinton [12] as
it prevents overfitting. In a hyperspectral image classification framework, the scarcity of
actual training labels make the perspective of data augmentation even more appeleaing.
However most state of the art publications using 2D or 3D CNNs for hyperspectral image
classification [6, 17, 21, 13] often limit their scope to small datasets that do not show the
strength of representation learning.

Some works have been focused on the artificial augmentation of publicily available
hyperspectral datasets. For example, Windrim et al. [23] proposed a physical model to
simulate how a spectrum is distorted under illumination conditions that differ from those
it was originally acquired under. This allows them to introduce some invariance to such
environmental variations at inference time. This however involve the creation and the
implementation of a sophisticated physical model based on expert prior knowledge that
is not generic and that introduces uncertainty due to the illumination estimation that is
not necessarily accurate on remote sensing images. A more straightforward technique has
been suggested by Chen et al. [6] to augment the number of training samples by generating
fake mixtures of existing spectra using linear combination and some gaussian noise. These
alterations are considered plausible based on prior work and somehow simulate how mixtures
can be observed by a hyperspectral camera. Finally Acquarelli et al. [1] introduced a label
propagation scheme from a pixel to its neighbour using a clustering approach. The goal
is to incorporate in the training set pixels that have been observed but not included in the
training because unlabeled. This approach allows them to learn from more pixels but the
total number of samples is still upper-bounded by the size of the acquisition.

In this work we ask the following question: how to augment the training datasets when
no physical model or prior expert knowledge is available, while adding as many new samples
as we want? A first idea is at the core of the work from Gemp et al. [9]. They implement
variational autoencoders on hyeprspectral data they then use as generative models for
unmixing to autoamtically find the endmembers and abundancy maps from an image.
For classification, Davari et al. [7] use a Gaussian Mixture Model (GMM) to estimate the
distrbution of spectral features based on attribute profiles. They then generate new synthetic
attribute profiles based on the approximated distribution to augment the original training
set.

The generative models are very interesting as they can approximate the latent statistical
distribution to the set of observations in order to sample new observations. We suggest to use
generative models to approximate the latent distrbution of the spectra in the hyperspectral
image in order to synthetize new samples that could realistically belong to it. This is a
data-driven approach that does not require any physical prior about the scene or the sensor.

More specifically, we build on the Generative Adversarial Network (GAN) [10] framework
to estimate the latent distribution of the true spectra and then use it to sample new ones

1USGS Spectral Library: https://speclab.cr.usgs.gov/spectral-lib.html
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Figure 6.1: The GAN structure used to synthesize artificial spectra. Red arrows indicate the data
flow when training the classifier and the discriminator while blue arrows indicate training of the
generator. Dotted arrows indicate connections that occur only in the supervised setting (when the
label is available).

which statistically should belong to this distribution. We aim for a semi-supervised method
that can leverage both labeled and unlabeled data. We validate this data augmentation
scheme using fake spectra on various public hyperspectral datasets using aerial and satellite
images on various geographical areas.

6.1.1 Generative adversarial networks

The principle of GANs was introduced by Goodfellow et al. [10] in 2014. The core idea
consists in using deep neural networks to model the statistical distribution underlying
an empirical set of observations. A generator is trained to approximate the projection
between a latent space of gaussian noise to the empirical observed distribution. However
the distribution is observed only through some samples and we wish to use the generator
to create new observations that could realistically belong to it. To do so, the generator is
trained to approximate the distribution using an adversarial loss function. This loss function
is implicitly defined through a second network, called the discriminator (or sometimes
the critique). The discriminateur learns to estimate whether a sample comes from the
true observed dataset or from the fake dataset (i.e. produced by the generator). At each
optimization step, the discriminator is trained for a few iterations so that it learns to separate
real and fake data. the generator is then optimized to that it fools the discriminator, i.e. that
the second network misclassifies the synthetic samples as real and that both distribution are
not separable anymore by the critique (cf. Definition 7)2.

Many GANs flavors have been proposed since their introduction. In our case we use
a generator G and a discriminator D based on the Wasserstein GAN model [2] using the

2A common analogy consists in describing the generator as a painting forger and the discriminator as a
detective. The forger wants to imitate famous paintings (the real data). To do so, its mission is to trick the
detective into thinking that the fake is actually a masterpiece, i.e. that both are indistinguishable.
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gradient penalty from Gulrajani et al. [11]. The Wasserstein GAN is designed to minimize
the Wasserstein distance between the real and fake distributions. G transforms a random
noise vector z into a spectrum so that D predicts that it belongs to the true distribution.
However this is a unsupervised behaviour, i.e. this can generate new samples that belong
to the real distribution but we cannot know their label yet. One possibility is to train one
generator for each class but this would be slow and expensive. In our case we want to be able
to condition the generator with respect to the class of interest for which we want to generate
new samples. We therefore use an auxiliary classifier C [18] that adds an additional penalty
when optimizing the generator that enforces that the generated samples are classified in
the chosen class. In this case, G takes as an input both the latent vector c and a condition
vector c that is a one-hot encoding of the desired class. The spectar generated by G have to
wrongly classified by D and rightly classified by C. The complete architecture is detailed
in the Fig. 6.1. If G and D can trained without any label, i.e. unsupervisedly, C needs
label information to understand how to separate the actual classes. The ensemble therefore
constitues a semi-supervised model that can leverage both labeled and unlabeled samples
from the whole hypercube.

Definition 7. Training of the generative adversarial networks:
Let n be the batch size, Z the latent distribution, Ω the set of samples (labeled and unlabeled),

Ω∗ ⊂Ω the subset of labeled samples and L the cross-entropy function. While the convergence
criterion has not been reached:

1. Optimize D. Repeat kD times:

• Draw a random vector x of n samples in Ω

• Iterate the gradient descent on D to maximize D(x)

• Draw a random vector z of n samples in Z
• Iterate the gradient descent on D to minimize D(G(z))

2. (optional) Optimize C. Repeat kC times:

• Draw a random vector x∗ of n samples in Ω∗, with y the class vector

• Iterate the gradient descent on C to minimize L(C(x∗), y)

3. Optimize G once.

• Draw a random vector z of n samples in Z
• (optional) Generate and concatenate to z a condition vector c

• Generate the fake samples x̂ = G(z)

• Compute the loss fonction Ltotale(z) = −D(x̂)

• (optional) Add the classification error on C: Ltotale(z) := Ltotale(z) +L(C(x̂),c))

• Iterate the gradient descent on G to minimize Ltotale

6.1.2 Experimental setup

We trained the previously described GAN architecture on the Pavia University, Pavia Cen-
ter, Indian Pines and Botswana datasets (cf. Section 4.2.2) on reflectances values – after
atmospheric correction when available. Since we aim to generate individual spectra and
not hypercubes, we use simple fully connected networks for G, D and C with four layers
each and the Leaky ReLU [15] activation. This non-linearity is more popular with GANs than
the usual ReLU since its gradient is non-zero everywhere so that gradients backpropagated
from D to G are less sparse. The output from the generator G is followed by a sigmoid to
constrain the synthetic normalized reflectances in the [0,1] range. D only has one continuous
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Figure 6.2: Average spectrum and standard deviation for to materials from the Pavia Center dataset.
The average synthetic samples are noisier than the real ones and overfit on some local spectral
properties.

output (binary classification with a sigmoid) and C has as many outputs as there are classes
of interest in the dataset (softmax classifier).

The optimization of the three networks is done using a stochastic gradient descent flavor
called RMSProp [22]. The ensemble is trained for 100 000 iterations with a batch size of 256.
We apply two training iterations to C and D for one iteration of G. When backpropagating
on G, the auxiliary classification loss function is weighted by 0.2. The global learning rate is
set to 5× 10−5.

As a baseline for evaluating the performance of our GANs on spectrum generation, we
also implement a gaussian mixture model using the scikit-learn library [19]. We reconstruct
one mixture for each from the datasets using 10 components. We generate new spectra by
sampling in the mixture of gaussian distribution.

6.1.3 Spectrum analysis

To begin with the analysis of the synthetic spectra, we start by training deux GANs on Pavia
University and Indian Pines. We compare the fake samples to the actual distribution based
on various criteria.

We can see in the Fig. 6.2 that the fake synthetic spectra exhibit similar statistical moments
to the real samples. The general shapes of the spectra are correctly approximated for every
class that we considered. However there are two limitations that we can identify. First
synthetic spectra look “noisier” than their real counterparts. Indeed it appears that the
GAN is overfitting some spectral characteristics existing in the training samples and that the
classifier C probably use to separate between classes. Those features are exacerbated in the
fake samples. Moreover the standard deviation in the synthetic distribution is lesser than the
actual standard deviation, i.e. synthetic spectra are less diversified than the true samples.
Once again this indicates that the generator is overfitting and falls into a phenomenon called
mode collapse [20], where it learns only the main mode of the data while forgetting lesser
represented groups of samples.

In order to understand better this overfitting, we apply a PCA on real and fake spectra to
project the distributions into a 2-dimensional space for simpler visualization (cf. Fig. 6.3).
We can observe that the clusters corresponding to the different classes are well-reproduced
by the synthetic distribution. However there are some geometrical distorsions in the fake
distribution that show that, altough the GAN was able to generally approximate the various
types of spectra, it was not able to capture the full distribution of the spectral features.

We can now try to estimate how well the synthetic distribution fits the actual class
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(a) Pavia University

(b) Indian Pines

Figure 6.3: PCA on real and fake spectra. The real distribution contains all labeled samples from the
dataset. The two distributions (real and fake) contain the same number of samples.

boundaries from the real distribution. To do so we train a linear SVM on the real spectra and
we evaluate it on the synthetic spectra. The linear SVM will compute the best separating
hyperplanes for the true distribution. Ideally these hyperplanes should separate true and
synthetic spectra equally well. If they are less accurate on fake spectra than on real ones,
then it means that the generator has produced unrealistic samples that do not belong to
the relevant class. If they are significantly more accurate on fake spectra, it means that the
generator produce samples with a very low intra-class variance that are clustered around
the class centroid and therefore exhibit a low diversity. The results of these experiments
are reported in the Table 6.1. We consider two approaches: training on a subset of 3% of
the spectra randomly sampled in the image or 50% of the image but spatially disjoint from
the validation area. In the unsupervised mode, we also use unlabeled samples to train the
GAN. As could have been expected based on the previous observations, the SVM is more
accurate on fake spectra than on the real ones. However training the SVM on the synthetic
spectra only still results in hyperplanes that separate between real spectra up to a certain
point. Another way to frame this is that synthetic spectra are less diverse than real ones, but
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Table 6.1: Accuracies of a linear SVM applied on real and fake spectra from the Pavia University
dataset.

Split Random (uniform) – 3% (r) Disjoint – 50% (s)

Train \ Test Real Synthetic Real Synthetic

Real 89.5 98.3 87.2 98.8
Synthetic 87.8 99.2 79.4 99.9

they are still relatively representative of the main features from each class, despite the fact
that they have been generated ex nihilo from random noise.

Finally, since GAN establish a mapping between a latent representation space and the
empirical signal distribution, it is possible to explore the diversity of spectra by interpolating
continously between two points from latent space. Indeed, if z1 and z2 are two random
vectors sampled from the latent gaussian distribution, then one can interpolate between the
two along the unit hypersphere:∀α ∈ [0,1], zα = sin((1−α)·ω)

sinω · z1 + sin(α·ω)
sinω · z2

x̂α = G(zα, c) where x0 = G(z1, c) and x1 = G(z2, c)
(6.1)

where ω is the angle between z1 and z2. Another possibility is to interpolate between two
condition vectors c1 et c2 with a fixed noise:∀α ∈ [0,1], cα = (1−α) · c1 +α · c2

x̂α = G(z,cα) where x0 = G(z,c1) and x1 = G(z,c2)
(6.2)

The interpolation between two points from the latent space generates a spectral pro-
gression as pictured in the Fig. 6.4a. In comparison a linear interpolation applied on the
raw spectral signatures produce uniformly distributed samples that might not be realistic.
The latent vectors actually encode a path on the manifold of the spectra. Computing the
barycenter between two spectral signatures does not necessarily has a physical meaning as
the resulting vector might not be on the manifold of observable spectra. On the opposite the
interpolation obtained using the GAN approach accurately represent the geodesic path on
the manifold that connects the two ends.

In the same idea, we can simulate spectral mixtures by interpolating between condition
vectors instead of noise vectors, as shown in the Fig. 6.4b. The mixtures of materials
observed in actual conditions often present non-linear properties due to terrain geometry,
light reflections or shadows and occlusions. Once again the GAN produces samples that
should belong on the manifold of the observed spectrum, while a linear interpolation walks an
arbiratry path in a space with no physical meaning. Provided that the mixtured hallucinated
by the generator are realistic, it would mean that this i way to achieve the inverse of the
unmixing operation. Therefore it would be possible to map a suspected to its endmembers
by mapping the complete latent space and the using a dictionary learning, nearest-neighbour
classification or model inversion techniques [9].

6.1.4 Data augmentation

Since the generated samples are realistic and somewhat representative of the real spectra, we
suggest to use them to enrich the existing labeled datasets as they might generate variations
of real spectra that could introduce new invariances in the model. We test this idea on several
datasets: Indian Pines (aerial, rural), Pavia University (aerial, urban), Pavia Center (aerial,
urban) and Botswana (satellite, rural). The results using the supervised mode (GAN) and
unsupervised mode (ss-GAN) are reported in the Table 6.2. Augmenting the dataset using
fake spectra slightly improve the classifiers’ accuracy.
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(a) Interpolation between two latent vectors from the class “meadows”.

(b) Interpolation between the classes “tree” and “bare soil” with a fixed noise vector.

Figure 6.4: [ I
nterpolations in the spectral latent space]Interpolating between two noise vectors or two con-
ditioning vectors in the latent space is a way to continuously explore the spectral distribution.
The GAN is trained on Pavia University for this figure. α is the interpolation factor.

However increasing too much the number of fake spectra does not increase the accuracy
anymore and slightly degrades it. Indeed in this case the synthetic spectra have too much
importance in the loss function and, as in the SVM case, they reduce the global accuracy.

Overall using GANs to generate synthetic spectra ex nihilo for data augmentation is
not a complete game changer and only slightly increases the accuracy. Indeed GANs can
only approximate the actual spectral distribution and possibly interpolate on the manifold.
Nonetheless they cannot generate completely new observations outside this distribution.
Therefore the information contained in the fake distribution cannot be significantly greater
than the actual distribution. Since the classification consists in finding inter-class separations,
the samples far from the class center are the more interesting for the model. Therefore the
semi-supervised approach is a way to generate labeled spectra that present statistical features
similar to unlabeled spectra, and therefore to augment the information quantity available
to the classifier, in the same way a clustering used to propagate labels would. However the
supervised approach quickly reaches its limits and saturates.

In conclusion, this work showed that GANs are powerful tools that can efficiently approx-
imate complex statistical distribution in a pure data-driven approach without any expert
knowledge. This is especially interesting since this might allow for hybrid techniques. The

142



Chapter 6 Model generalization

Table 6.2: Accuracies of a 4-layers multi-layer perceptron on several hyperspectral datasets using
various data augmentation policies. The datasets are split either in half (s) or by randomly sampling
3% of the pixels on the whole image (r).

Dataset Pavia University Pavia Center Botswana Indian Pines
Augmentation 3% (r) 50% (s) 3% (r) 50% (s) 3% (r) 50% (s) 3% (r) 50% (s)

∅ 92.72 86.22 98.93 96.26 86.90 84.87 79.44 74.00
GAN 92.95 86.47 99.00 96.26 87.72 84.60 80.01 74.81

ss-GAN 93.12 87.20 98.93 96.70 88.40 85.27 80.42 74.58

community has invested lots of time and effort in developing hyperspectral simulation
models [5]. These simulators are based both on laboratory reflectance measures of known
materials and physical models of sensor and atmosphere. However these models are approxi-
mative and simplified, therefore they necessarily introduce noise and errors. It is difficult
for these models to deal with optical, atmospherical and electronical effets that are complex
(noise provoked by component heating, parasites due to light, distorsion due to the atmo-
sphere. . . ). A hybrid approach combining data and physics could be based on conditioned
GANs that maps the smooth spectra generated by the simulators to “realistic” observations,
therefore letting the GAN approximating the complex phenomena that are expensive and
difficult to compute. The GAN task would be only to make simulated data more realistic and
in line with the observations.

6.2 Scalability to large-scale datasets

6.2.1 Scene diversity

Until now we worked with datasets that cover only one scene, i.e. a unique geopgrahical
area captured at a given time. The experiments from the Chapters 3 to 5 were done on the
cities of Vaihingen and Potsdam, one at a time. However this is not exactly a actual use case.
Earth Observation is done in the wild by multiple, partially overlapping, acquisitions all
over the globe at several points in time. For these reasons it is necessary to evaluate how
models can generalize on various environments that reflect the diversity of Earth’s geography.
Thecore question is to understand what we can expect of deep networks when applied on
new unseen data. It is reasonable to expect some sort of decrease in the accuracy, since any
dataset comes with its own intrinsic bias on which the model will overfit. However it is
important to quantify this decrease.

As a first experiment we investigate transfer between two similar colour scenes: the ISPRS
Potsdam and ISPRS Vaihingen. The two datasets are comprised of EHR aerial images with
IRRG channels, acquired in urban areas and labeled for the exact same classes. Interestingly
the two cities do not exhibit the same features: Potsdam has six times more inhabittants than
Vaihingen and twice the density. The buildings are not built based on the same architectures
and the overall town organizations are quite different. As a first we consider the SegNet
model trained on the IRRG from Potsdam (cf. Chapter 3) that we apply at inference time
on Vaihingen. The generated maps are shown as is in the Fig. 6.5. Overall the main com-
ponents of the image are detected by the network, especially the roads and the buildings.
However there are two lage confused areas: buildings with the clutter class (in red) and no
vehicles. The latter can be explained by the difference in resolution between the two datasets.
The convolutions for the model trained on Potsdam were optimized for images at 5 cm/px
resolution. When applied on the Vaihingen image at 9 cm/px, vehicles are smaller than
expected and therefore misclassified as the scale factor has changed. Overall the accuracy on
Vaihingen for the model trained on Potsdam alone reaches 77%, which is significantly worse
than the results presented in the Chapter 3. Training a model on one scene seems to generate
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a significant bias that impedes its generalization to new unseen data.

IRRG tile 21 Ground truth SegNet prediction
(Vaihingen)

SegNet prediction
(Potsdam)

Figure 6.5: Semantic maps predicted on tile # 21 (Vaihingen) by a SegNet model trained respectively
on Vaihingen and Potsdam. The transfer without fine-tuning from Potsdam to Vaihingen is able to
detect the main objects but is significantly less accurate than a model trained on Vaihingen.

A realistic use case could be labeling a (very) small part of the target dataset (here,
Vaihingen) and to perform a quick fine-tuning of the model pretrained on Potsdam. This
would allow the model to adjust its weight to take into account the new images without
retraining the full data-hungry network. We consider the same SegNet network, fine-tuned
on the ISPRS Vaihingen dataset as follows:

• the weights of the last decoding block are optimized with a learning rate α = 0,01,

• the learning rate for the other layers in the decoder is set constant to α
10 ,

• the weights of the encoder are frozen.

The fine-tuning is tested in experiments where few data have been labeled, e.g. with 1/4
of tile #3 or only tile #3 in full. To estimate the improvement on the Potsdam pretraining,
we also compare the accuracies of SegNet models trained on the same images, but from
scratch (i.e. the encoder is initialized with VGG-16 pretrained on ImageNet and the decoder
is randomly initialized). Results are reported in the Table 6.3.

Table 6.3: Semantic segmentation results using transfer learning for the ISPRS Vaihingen dataset.

# tiles pretraining Imp. surfaces Buildings Low veg. Trees Vehicles Accuracy

1/4
ImageNet 76.6 29.6 0.07 95.1 0.01 54.8
Potsdam 80.3 55.0 16.0 95.8 43.3 65.5

1
ImageNet 91.8 78.8 50.4 93.5 47.6 81.0
Potsdam 83.3 91.2 59.4 85.6 60.1 82.8

The model accuracy significantly decreases as we remove labeled tiles from the training
set. Not only does this phenomenon appear when they are less dense labels available, it also
occurs when existing annotations are made sparser and less complete. Maggiolo et al. [16]
indeed showed that the accuracy of FCNs models trained on Vaihingen using a coarse ground
truth significantly decreased. They considered an alternative version of the ground truth
that only preserved 60% of the labeled pixels. Some objects are purely and simply omitted
while other are only annotated by scribbles that coarsely approximate their respective shapes.
The FCN is then trained on these pixels and learning is deactivated on unlabeled areas. The
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overall accuracy drops by approximately 20%, which is similar to ours results obtained by
training SegNet on a quarter of a tile with dense annotations.

This goes to show that if there are a least a few annotations on the target domain (in
our case Vaihingen), pretraining on a source domain (Potsdam) significantly improves the
generalization ability of the network at inference time. Fine-tuning makes it possible to alle-
viate the dataset bias from Potsdam and significantly reduce the influence of environmental
conditions. As a practical use case, these result suggest that segmentation models could be
adapted to new acquisitions with a moderate labeling effort. However we underline that the
weights of the model trained on Potsdam are not as generic as those obtained by training on
ImageNet for natural image classification. Indeed the latter draw their expressiveness by
the large diversity of objects and classes exhibited by ImageNet. Reproducing those proper-
ties using remote sensing data requires a large-scale dataset that comes with a significant
variability, both regarding semantics and observed geographic areas.

6.2.2 MiniFrance

City distribution Orthoimage (Nice) Annotations (UrbanAtlas)

Figure 6.6: Overview of the MiniFrance dataset.

Creating a remote sensing counterpart to ImageNet requires gathering and labeling
a vast quantity of data. Although labeling natural images for classification and object
recogntiion is relatively quick, dense segmentation annotations are significantly longer to
obtain. Moreover in remote sensing distiinguishing between various objects types often
require expert knowledge and some experience of photointerpreattion that is out of reach
for the usual crowdsourcing strategies often deployed in computer vision and machine
learning [4].

Therefore we choose to rely on semi-manual annotation of a large volume of data that
have been labeled by an automatic classifier and then corrected by a specialist. The accuracy
of such annotations are certainly lesser than those of human experts but this allows us to
build a datatset bigger than those which currently exist. If learning on noisy or weak labels
can require specific learning processes [14], in our case we start by training a fully supervised
baseline to assess what is achievable with the dataset we built. We start with a country-scale
dataset focused on France since it has a moderate climate, a strong environmental diversity
(mountains, coasts, forests, crops, urban metropolis. . . ) and – even more important – lots of
data and annotations that we can leverage.

We collect a large-scale dataset on Metropolitan France. We use the BD ORTHO from the
IGN as a data source to collect multiple aerial images with a spatial resolution of 50 cm/px.
To ease the reproducibility of our findings, we consider only acquisitions performed between
2012 and 2015 that freely available and under an opence license. Overall these images cover
25 departements. The images are released by the IGN as RGB tiles. The mosaic has been
split in square tiles of 10 000 px× 10 000 px, i.e. 25 km2. Images are initially published in
the JPEG2000 format although we convert them in GeoTIFF encoded in 8-bits integers for
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faster decoding.
Concurrently, we also gathered land cover information from the Copernicus project

Urban Atlas 2012 3. Urban Atlas is a land cover map of Europe for 17 urban classes and
10 rural classes that cover most large cities from the European Union that have more than
30 000 inhabitants. The annotations are semi-automated, generated by a classification and
then inspected by deux experts and corrected based on high resolution satellite images
acquired in 2012 (mostly SPOT-5 data). 82 extended urban areas are concerned in France.
The intersection between the Urban Atlas data and the images from the BD ORTHO allow us
to find 16 cities and their general suburbs with images ranging from 2012 to 2014 (to avoid a
too large time gap between the Urban Atlas reference and the images). The cities we use are
listed in the Table 6.4. We rasterize the corresponding shapefiles for each image of the BD
ORTHO to generate semantic segmentation ground truth tiles. We leverage the hierarchical
structure of the Urban Atlas taxonomy by grouping various labels with similar semantics
into 14 land cover categories that are detailed ina Table 6.5.

As ancillary annotations that might be usable in the future, we also considered using
the French building cadastre which is available under an open license. We integrated and
rasterize for all tiles the cadastre released in the shapefile vector format by the governemental
group Etalab4. We remove from the ground truth buildings that were added to the registry
after January 1st, 2015, since they would not have been built when the images from the BD
ORTHO were captured.

We name the complete dataset MiniFrance. An overview is given in the Fig. 6.6. The 16
cities we consider are mostly in the west of France although south-east, center and north are
also represented. 8 towns are used for training and the remaining 8 are kept for evaluation.

Table 6.4: List of cities in the MiniFrance dataset.

Conurbation Tiles % pixels Colour

Tr
ai

ni
ng

Nice 170 8.01%
Nantes, Saint-Nazaire 226 10.65%

Le Mans 107 5.04%
Lorient 68 3.20%
Brest 88 4.14%
Caen 126 5.94%

Dunkerque, Calais, Boulogne-sur-Mer 150 7.07%
Saint-Brieuc 71 3.34%

E
al

u
at

io
n

Marseille, Martigues 162 7.63%
Rennes 196 9.24%
Angers 123 5.79%

Quimper 79 3.72%
Vannes 73 3.44%

Clermont-Ferrand 150 7.07%
Lille, Arras, Lens, Douai, Hénin-Beaumont 275 12.96%

Cherbourg 57 2.68%

To obtain a baseline result on MiniFrance, we train a first SegNet model for semantic
segmentation on the 14 land cover classes from Urban Atlas5 The same hyperparameters are
used as in the Chapter 3. Note that the considered classes are significantly more sophisticated
than those from the datasets we worked with until now. Indeed the semantics of land covers

3Urban Atlas: https://land.copernicus.eu/local/urban-atlas
4Cadastre Etalab: https://cadastre.data.gouv.fr/datasets/cadastre-etalab
5In practice we only consider 12 classes since “Forests” and “Orchards” are absent from the MiniFrance

dataset.
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and land uses are abstract concepts generally linked to a whole area and not individual
objects. Distinguishing commercial buildings from residential housing requires a more
complete understanding of the classes than separating coarse object types (e.g. artificial
structures against vegetation). Moreover the annotations from the Urban Atlas project are
generally less accurate and noisier than the ground truth from the ISPRS dataset. The
time gap also introduces new errors due to changes. Finally the diversity of cities and
environments exhibited by MiniFrance require from the model a robustness to appearance
variations and environmental conditions. From the statistical point of view, MiniFrance
shows a significantly larger variance than Vaihingen with huge variations from town to town,
as reported in the Tables 6.7a and 6.7b.

(a) RGB image (b) Ground truth (c) Prediction

Figure 6.7: Example of a semantic map generated on MiniFrance. An excerpt from the suburbs of
Clermont-Ferrand.

The semantic segmentation metrics achieved by SegNet trained on MiniFrance are re-
ported in Table 6.6. As expected the model obtains relatively low scores, with large F1
variations between the various classes. Residential, commercial and agricultural land uses
are well identified while rarer classes are barely learnt (mines, sport and leisure installations,
water bodies. . . ). Overall this first experiment shows that if the coarse classification between
various land covers (built areas, vegetation, crops) is achievable, fine land use classification
is much more complex. An example of semantic map produced by SegNet on a tile from
MiniFrance is pictured in Fig. 6.7. These results remain encouraging considering the task
difficulty. Especially the diversity of the observed conurbations and the scale of the dataset
make it a very interesting challenge for future remote sensing image interpretation models.

Some of the works presented in this chapter have been presented in an international
conference:

• Nicolas Audebert, Bertrand Le Saux, and Sébastien Lefèvre. “Generative Ad-
versarial Networks for Realistic Synthesis of Hyperspectral Samples”. In: 2018
IEEE International Geoscience and Remote Sensing Symposium (IGARSS). July 2018,
pp. 5091–5094
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Table 6.5: Land cover taxonomy from UrbanAtlas 2012.

Code Land cover Class Colour

10000 Artificial surfaces 1
11000 Urban fabric 1
11100 Continuous urban fabric 1
11200 Discontinuous urban fabric 1
11210 Dense discontinuous urban fabric 1
11220 Moderately dense discountinuous urban fabric 1
11230 Sparse discontinuous urban fabric 1
11240 Very sparse discontinuous urban fabric 1
11300 Isolated structures 1
12100 Industrial, commercial, military or transport units 2
12200 Road and rail networks and areas 2
12210 Highway network and areas 2
12220 Other road networks and areas 2
12230 Railway network and areas 2
12300 Port areas 2
12400 Airports 2
13000 Mines, building and dump sites 3
13100 Mineral extraction sites 3
13100 Dump sites 3
13300 Construction sites 3
13400 Unoccupied areas 3
14000 Artificially vegetalized areas 4
14100 Green urban areas 4
14200 Sport and leisure facilities 4
20000 Crops, semi-natural and humid areas 5
21000 Non-irrigated arable lands 5
22000 Permanent crops 6
23000 Pastures 7
24000 Complex and heterogeneous crops 8
25000 Orchards 9
31000 Forests 10
32000 Mixed herbaceous vegetation 11
33000 Sparsely or non-vegetated areas 12
40000 Humid areas (marshes, bogs. . . ) 13
50000 Water bodies and courses 14

Table 6.6: Semantic segmentation results of a SegNet model trained on MiniFrance (class-wise F1
scores and overall accuracy).

Class 1 2 3 4 5 6 7 8 11 12 13 14 Overall

Ensemble 50.89 41.39 0.00 0.00 0.00 56.74 0.84 52.26 64.65 8.70 1.23 0.01 51.97
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Table 6.7: Comparison of pixel-wise statistics in Vaihingen and MiniFrance.

(a) Pixel-level channel-wise statistics for Vaihingen.

Ensemble
Mean ± std

Infrared Red Green

Train 120.30± 54.47 81.64± 38.58 80.52± 36.62

Test 118.07± 56.23 80.69± 41.75 79.70± 40.37

Global 119.74± 54.93 81.40± 39.40 80.32± 37.59

(b) Pixel-level channel-wise statistics for MiniFrance.

Conurbation
Mean ± std

Red Green Blue

Nice 87.44± 67.04 95.70± 60.50 76.11± 60.19

Nantes, Saint-Nazaire 126.05± 46.64 132.81± 35.85 109.25± 38.09

Le Mans 108.06± 57.10 122.98± 44.05 85.93± 39.32

Lorient 89.43± 62.12 100.80± 53.21 87.12± 52.82

Brest 120.53± 76.08 134.98± 62.98 107.72± 62.76

Caen 127.55± 56.26 134.88± 40.76 114.36± 41.51

Dunkerque, Calais, Boulogne-sur-Mer 133.43± 66.10 138.65± 55.43 123.01± 56.93

Saint-Brieuc 116.91± 61.63 128.37± 50.72 105.12± 52.52

Marseille, Martigues 102.43± 62.58 109.71± 55.51 95.53± 57.45

Rennes 94.82± 46.42 110.57± 36.62 87.34± 28.17

Angers 123.04± 48.27 124.21± 33.14 97.28± 34.77

Quimper 115.04± 72.31 127.73± 58.71 104.76± 56.80

Vannes 75.70± 43.08 84.33± 32.72 68.00± 27.94

Clermont-Ferrand 93.74± 33.58 101.79± 25.79 77.41± 20.21

Lille, Arras, Lens, Douai, Hénin-
Beaumont

120.14± 58.20 121.78± 47.45 100.94± 48.30

Cherbourg 123.90± 62.51 127.77± 57.14 114.54± 60.34

Train 115.30± 62.90 124.33± 52.42 101.94± 52.78

Test 106.81± 55.59 113.91± 45.41 93.00± 44.49

Global 110.83± 59.32 118.85± 49.14 97.24± 48.80
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Homo sapiens is about pattern recognition, he says. Both a gift and a trap.

— William Gibson (Pattern Recogntion, 2002)
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Summary:

Until now we focused our study on semantic segmentation through the lens
of dense pixel-wise classification. The models we used for this task could

leverage spatial context, the loss function was a simple average of the classification
error on all pixels. However scene understanding can only be achieved through the
extraction and the manipulation of concepts linked both through objects and their
relationships, independently from the pixels they are made of.

This chapter lookes into various extensions of the fully convolutional network
models to leverage spatial structure from the objects of interest in images.

First, we will try to add posterior structure on the pixel-wise predictions com-
puted by the FCNs we train. More specifically we will show that it one can easily
structure the pixel-wise prediction generated by the FCNs to accurately detect,
segment and recognize vehicles in aerial images.

Second, we will study alternative representations of the ground truth that ex-
press the same information will making it possible to enforce spatial structure More
precisely, we introduce an alternative loss function that operates on a continuous
variant of the ground truth semantic annotations obtained by distance transform.
This distance transform regression approach does not replace the standard clas-
sification model but instead complements it. In practice, we suggest to train a
multitask network that performs simultaneously the euclidean distance trasnform
maps regression and the pixel-wise classification. Tis method allows us to couple
geometry and semantics in the loss function and regularize the segmentation.
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7.1. Segment-before-detect

7.1 Segment-before-detect

7.1.1 Regions and objects

Vehicle detection and recognition are two popular tasks addressed in remote sensing. Not
only localization and identification of vehicles intervene in aerial surveilance and scene
understanding, these informations are also extremely useful for 3D city reconstruction,
optical flow estimation and co-registration to detect moving parts on an image and have a
better understanding of the static parts and their geometry [31]. A lot of works have been
focused on automating vehicle detection in VHR images using a large panel of techniques,
ranging from HOG features and SVMs classifiers [37, 16, 27] to 3D pose estimation mod-
els [24] and deformable part models [42] or mixtures of rotation-invariant models [43]. Deep
learning, and most notably the CNNs, has also been applied to this task [10]. Recently most
methods use specifically tuned deep networks designed for object detection with region
proposals such as Faster-RCNN [46] for Sommer, Schuchert, and Beyerer [51] or YOLO [45]
for Van Etten [57]. However there have been surprinsgly few works that have looked into
simultaneous localization and detection despite the introduction of the Vehicle Detection in
Aerial Imagery (VEDAI) dataset by Razakarivony and Jurie [44] in 2016 and its baseline using
experts features to characterize various vehicle classes in IRRGB images. Some older works
mostly addressed this problem as a multi-scale segmentation task, for example combined
with fuzzy logic rules [22] and linear discriminant analysis [14]. In particular, Eikvil, Aurdal,
and Koren [14] show that performing a pre-segmentation of the image before the vehicle
detection step was useful to reduce the number of false alarms.

Inspired by this statement, we suggest to study how, based on modern semantic segmen-
tation techniques using deep networks – such as those introduced in Chapter 3 – we can
obtain a complete vehicle detection and classification pipeline by successive refining. We
present in this section a complete pipeline of segmentation for vehicle detection dubbed
segment-before-detect. Going further than the usual bounding boxes generally used for de-
tection, we show how this framework allows us to predict the mask and the type of vehicle
instances in aerial image.

Our segment-before-detect pipeline is able to extract and classify vehicles based on VHR
images in three steps, pictured in the Fig. 7.1:

1. Semantic segmentation and inference of the pixel-evel vehicle mask using a FCN,

2. Instance detection by regressing the convex hull of connected components,

3. Vehicle classification of the identified objects using a CNN.

Small objects detection

As we have seen in the Chapter 3, a deep network such as SegNet is generally accurate enough
to predict individual vehicles in very high resolution images (< 50cm/px). In that case we
can simply extract the connected components of the vehicle masks to find the individual
vehicle instances in the image. For each connected component, computing a bounding box is
fast and simple.

However the predictions coming out from SegNet are often noisy. Especially CNNs
applied to Earth Observation images tend to produce blurry inter-class boundaries [35].
Consequently we remove many false positives and separeate vehicles that might have been
fused in the same connected component (i.e. the same “blob”) by applying a morpholgocial
opening on the semantic mask produced through SegNet (cf. Fig. 7.2)1. We then remove

1The loss of the exact object edges is not critical since we will classify the objects using a patch-based approach,
centered on the connected component.
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Figure 7.1: Illustration of the segment-before-detect pipeline for vehicle segmentation, detection and
classification.
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Figure 7.2: Localization of vehicle instances using a morphological opening and connected compo-
nents extraction.

all objects with a surface lesser than a strict threshold to remove false alarms that would
correspond to objects smaller than typical vehicles and that actually are misclassifications
(e.g. air conditioners on roofs, garbage bins, etc.). Although this post-processing is very
simple, it significantly improves the detection performance of the SegNet model.

Vehicle recognition using a CNN

Provided that we able to detect and find the location of the vehicles, the next step consists in
finding their type. Therefore we hope to find whether the vehicle is car, a truck, a van, etc.
This is a standard image classification problem that CNNs are well-known to solve efficiently.
We use the classical approach that consists in fine-tuning a CNN [38, 61] model that has been
pretrained on the ImageNet dataset [48] for vehicle recognition.

More specifically we compare the popular models from the literature used for small
image classification ('30 px× 30 px): LeNet [32], AlexNet [29] and VGG-16 [50].

Our goal is to train these classifiers on a large vehicle dataset (source domain) and then
apply it on new data from another scene (target domain). Therefore we might be faced with
the overfitting problem. Indeed we are looking to transfer knowledge from one dataset
to another. To improve the model generalization ability, we can employ two techniques:
domain adaptation and data augmentation. Domain adaptation will try to minimize the
difference between the training dataset and the inference samples. Data augmentation will
try to generate new synthetic training samples to robustify the classifier and improve its
generalizability.

In our case, we suggest to normalize all vehicles so that they all exhibit the same azimuth,
i.e. that all images containing a vehicle are aligned the same way, with the vehicle appearing
horizontally. During training, we use bounding boxes (actually, convex hulls estimated from
the segmentation mask) to estimate the vehicle direction and then we rotate the whole image
to realign all the samples.

Finally we also increase the size of the training set using geometrical augmentation
techniques to have more diverse samples: horizontal and vertical translations (±10 px), zooms
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identity 90°rotation 180°rotation horizon. sym. vertical sym. zoom translation

Figure 7.3: Data augmentation on a vehicle from the VEDAI dataset.

(up to 1.25×), rotations (90°, 180°and 270°) and axial symetries, as pictured in the Fig. 7.3.
When the realignement strategy is applied, we only consider the 180° rotation.

7.1.2 Vehicle segmentation

To train a CNN for vehicle classification, we have to possess a sufficiently large labeled
dataset. To achieve this we rely on the VEDAI dataset [44] (cf. Appendix A.1.5) that contains
many annotated vehicles in aerial images. VEDAI is used to train the initial CNN used for
vehicle recognition, that will be applied at inference time on the ISPRS Potsdam dataset
(cf. Appendix A.1.1). Classification results on VEDAI are obtained using a 3-fold cross-
validation.

To validate our approach, we start by using the ISPRS Potsdam (cf. Fig. 7.4) dataset on
which we manually annotated the vehicles into four sub-categories: cars, vans, trucks and
pick-ups. The vehicles that were initially labeled in the “clutter” class (e.g. heavy duty
construction vehicles) in the original ground truth are excluded. As reported in the Table 7.1,
the dataset is mostly comprised of cars (94% of the vehicles).

We train a SegNet for semantic segmentation on this dataset and then apply the CNN
pretrained on VEDAI for vehicle recognition. Results are obtained through cross-validation
using 18 tiles for training and 6 tiles for validation. The spatial resolution from Potsdam is
interpolated to 12.5 cm/px to match the GSD from VEDAI instead of the original 5 cm/px.

Then, we consider the NZAM/ONERA Christchurch dataset (cf. Appendix A.1.6). We
recall taht the ground truth on this dataset is coarser than the one from Potsdam and is
closer to the bounding polygon generally annotated for object detection tasks, as shown
in the Fig. 7.4. We also extend this ground truth by manually annotating the vehicles into
the same four sub-categories: cars, trucks, vans and pick-ups. Once again, the dataset is
dominated by the car class (cf. Table 7.1), although this not surprising since most vehicles as
tourism vehicles.

Since the NZAM/ONERA Christchurch ground truth is actually a set of shapefiles,
i.e. polygons that might interesect, for trees, buildings and vehicles, we rasterize them
into semantic maps. To do so we defined four classes of intrest: background, buildings,
vegetation and vehicles. We build a dense ground truth by labeling first pixels that belong
to a building bounding polygon, then pixels that belong to a vehicle bounding polygon and
then pixels belonging to vegetation. The remaining pixels are assigned to the background
class. This order accounts for the presence of vehicles on rooftop parking lots and that
tree-like vegetation can mask cars – and in extreme cases buildings. To take into account the
uncertainty on the bounding boxes around the objects, we eroded the ground truth by a disk
of radius 5 px along the edges (about 60 cm). We deactivate learning on those pixels.

We train a standard SegNet for semantic segmentation on this dataset and then apply
the CNN pretrained on VEDAI for vehicle recognition. The resutls are obtained by cross-
validation using 3 tiles for training and 1 tile for validation. The spatial resolution is
once again interpolated at 12.5 cm/px to match the GSD from VEDAI instead of the initial
10 cm/px. The hyperparameters described in the Chapter 3 are reused for this experiment.

Semantic segmentation

We report in the Table 7.2 the detailed F1 scores and overall accuracy of the SegNet model
trained on Potsdam. Let us recall that these results are obtained at resolution 12.5 cm/px, yet
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(a) ISPRS Potsdam (b) NZAM/ONERA Christchurch

Figure 7.4: Annotations on the two datasets used for this experiment.

Table 7.1: Number of vehicles for each class in the three datasets.

Dataset Cars Trucks Vans Pick-ups Boats Camping-cars Others Planes Tractors

VEDAI 1340 300 100 950 170 390 200 47 190
ISPRS Potsdam 1990 33 181 40 - - - - -
Christchurch 2267 73 120 90 - - - - -

there are very close to those previously obtained using the initial 5 cm/px GSD. A qualitative
segmentation sample is shown in the Fig. 7.5.

As illustraed by the Table 7.3, our SegNet model trained on the NZAM/ONERA Christchurch
dataset achieves a F1 score of 61.9% on vehicles, which is sufficient for our purpose and
reasonable considering the coarseness of the ground truth compared to Potsdam. This finding
has practical value since it shows that one can learn semantic segmentation models with
coarse annotations, e.g. polygonal bounding boxes that were initially designed to train
detection models. Inference on a tile from Christchuch takes approximately 120 seconds on
a GPU NVIDIA Tesla K20c. A sample segmentation is exhibited in the Fig. 7.5.

7.1.3 Vehicle detection

We apply on the predictions inferred on both datasets a morphological opening of radius 3 px
(' 35 cm uncertainty on the predicted vehicle shapes) to separate vehicles that might have
been merged in the same connected component. We also filter out all connected components
that cover less than 1.5 m2 (100 px). Indeed an average tourism car covers around 4 m2.
Considering that occlusions might recover up to 60% of the vehicle, we set the treshold at
1.5 m2. We then extract all connected components from the vehicle mask and we compute
the convex hull and the bounding box for each component. On the ISPRS Potsdam dataset,
as the initial ground truth is comprised of dense pixel-wise annotations, we also regress
bounding boxes for each connected component and we manually corrected the occasional
errors to obtain a detection ground truth.

We follow the usual guidelines for evaluating object detectors [15]: a true positive
is defined as a predicted bounding box that whose intersection over union (IoU) with a
bounding box from the ground truth is greater than 0.5. If several predictions exist for the
same vehicle, we keep the one is the highest IsU and label the remaining predictions as
false alarms. On the NZAM/ONERA Christchurch dataset, we use as a baseline the results
obtained by Randrianarivo et al. [43] on the tile they selected for evaluation. Their model
consists in a Discriminatively trained Model Mixture (DtMM) comprised of five models, one
for each of the principal orientations.
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RGB (Christchurch) Ground truth (Christchurch) SegNet (Christchurch)

RGB (Potsdam) Ground truth (Potsdam) SegNet (Potsdam)

Figure 7.5: Semantic segmentation samples obtained on Potsdam and Christchurch.
Colors: white: roads, blue: buildings, cyan: low vegetation, green: trees, yellow: vehicles, red: clutter.

Table 7.2: Semantic segmentation results on the ISPRS Potsdam dataset at 12.5 cm/px (F1 scores and
overall accuracy).

Dataset Method Imp. surfaces Buildings Low veg. Trees Vehicles Accuracy

Validation
12.5 cm/px

SegNet RGB 92.4± 0.6 95.8± 1.9 85.8± 1.3 83.0± 2.1 95.7± 0.3 90.6± 0.6

Test 5 cm/px
SegNet IRRG 92.4 95.8 86.7 87.4 95.1 90.0

FCN + CRF [49] 91.8 95.9 86.3 87.7 89.2 89.7

To understand the influence of the morphological opening preprocessing on the instance
segmentation task, we compute and report in Table 7.4 the average IsU obtained on vehicle in-
stances and precision/recall metrics for various preprocessing combinations. This shows that
the naive morphological opening and small object filtering (inferior to 100 px) significantly
improves the model accuracy by removing many false positives. This process is especially
effective on the NZAM/ONERA dataset where the coarseness of the annotation results in
less precise semantic maps at inference time. The complete process achieves a IsU score of
74% on Potsdam and more than 70% on Christchurch.

Finally we also report pure detection metrics in the Table 7.5. On Christchurch, our
segment-before-detect pipeline achieve results significantly better than the two baselines:
mixture of models and HOG+SVM. Although no other vehicle detection method had been
applied on Potsdam yet, we also indicate our precision/recall scores on this dataset to set a
future baseline. Qualitative detection examples are illustrated in the Fig. 7.6.

On Christchurch, where annotations are very coarse, our pipeline achieves a 0.81 F1
score, and over 0.87 on Potsdam. In comparison the sophisticated deformable part model
baseline [42] only reaches a 0.74 F1 score on the same dataset. Moreover let us remind to
the reader that we defined a true positive using the 0.5 IsU threshold. In the literature, it is
quite common – considering similar spatial resolutions (< 30cm) – to find works defining
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Table 7.3: Semantic segmentation results on the NZAM/ONERA Christchurch dataset (F1 scores and
overall accuracy).

Background Buildings Vegetation Vehicles Accuracy

RGB 75.6± 8.9 91.7± 1.3 55.2± 11.6 61.9± 2.4 84.4± 2.6

Christchurch Christchurch Potsdam

Figure 7.6: Sample detections on Potsdam and Christchurch (true positive are in green, false positive
are in red and ground truth is in blue).

a true positive on the small vehicles using a 0.25 threshold instead. On a similar urban
aerial dataset, Tang et al. [54] achieves a 0.83 F1 score using the Faster-RCNN [46] detection
network based on region proposals. Posterior to our work, Van Etten [57] introduced a
vehicle detection dataset with GSD in the same range (between 10 cm and 1 m) and adapted
the YOLO network [45] to aerial images. He achieves a F1 score of 0.90 and predicts the
number of vehicles in an image with a 5% margin (relative error). However this approach
only predicts bounding boxes and defines a true positive using the 0.25 threshold, which
is much more tolerant the the one we chose in this work. In conclusion it seems that the
segmentation before detection pipeline is very competitive with the state of the art, including
pure detection methods that have been tuned for bounding box prediction. Especially
interesting is the fact that our pipeline can infer complete vehicle masks and not only coarse
bounding boxes, even when trained with such annotations.

The Christchurch is more difficult for two reasons. First, the vehicle density is significantly
greater than for Potsdam, as the city contains many vehicles that are packed in small areas
(e.g. parking lots). Second, the coarse annotations from the ground truth make it hard
for the FCN to accurately predict the object boundaries and result in blurry edges, i.e.
imprecise vehicle masks (cf. Fig. 7.5, the mIsU on Christchurch is of 66.6% against more
than 80% on Potsdam). This combination of factors makes the vehicle instance extraction
problem more difficult, yet it still remains achievable using our approach. However there is
a tendency of the resulting bounding boxes to contain more than one vehicle. Surprisingly,
semantic segmentation metrics remain quite high despite training the network on coarse
labels intented for object detection. For this reason the segmentation can be used as an
intermediate step for detection tasks, which are currently addressed in the state of the art by
sophisticated approaches using deep networks and region-proposal strategies. Moreover the
connected component extraction could be significantly improved to generate a more effective
bounding box generation strategy, for example by applying the watershed on the probability
maps [6, 4], or by performing simultaneously the segmentation and the instance prediction
inside the deep net [13, 21].
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Table 7.4: Instance segmentation and vehicle detection results for various morphological preprocess-
ings (mean Io, precision and recall).

Dataset preprocessing mIsU Precision Recall

NZAM/ONERA
Christchurch

∅ 60.0% 0.597 0.797
Opening 69.8% 0.817 0.791

Opening + small object removal 70.7% 0.833 0.791

ISPRS Potsdam
∅ 70.1% 0.748 0.842

Opening 73.3% 0.866 0.842
Opening + small object removal 74.2% 0.907 0.841

Table 7.5: Vehicle detection results on Potsdam and Christchurch.

Dataset Method Precision Recall

NZAM/ONERA Christchurch
HOG+SVM [37] 0.402 0.398

DtMM (5 models) [43] 0.743 0.737
Segment-before-detect 0.833 0.791

ISPRS Potsdam Segment-before-detect 0.907 0.841

Vehicle density estimation

Once the vehicles have been detected in the images, a very simple task consists in counting
how many cars there are in a given area. This is a common metric used for traffic estimation,
urban planning and so on. We divide the two datasets in a grid of 1000× 1000px cells
(125×125 m2) and we compare the number of predicted vehicles compared to the number of
actual vehicles present in the ground truth:

Erelative =
|# predicted vehicles−# actual vehicles |

# actual vehicles
. (7.1)

Results are averaged and rounded to the nearest integer on both datasets and detailed in
the Table 7.6. On Potsdam as on Christchurch, estimations are correct with an error margin
of less than 10% (i.e. ±5 vehicles in average). Estimations on Christchurch have a slightly
greater error rate due to the less precise segmentation and detection steps.

Once the density has been calculated, it is possible to reduce the size of the cell to
produce density maps based on vehicle occupation, as shown in the Figs. 7.7 and 7.8. This
type of density maps can then be integrated to a GIS such as OpenStreetMap to automatically
identify traffic jams, parking lots [27], road blocks, etc.

7.1.4 Vehicle classification

Now that we are able to locate and segment vehicles in the images, we can focus on recogniz-
ing the kind of vehicle we are faced with. To do so we compared three CNN architectures of
increasing complexity: LeNet [32], AlexNet [29] and VGG-16 [50].

LeNet-5 is a small CNN that we train from scratch using a random initialization on the
vehicles from the VEDAI dataset, using image patches of 32× 32. AlexNet and VGG-16 are
two networks that won the ILSVRC competition in 2012 and 2014. Preliminary experiments
showed that initializing these networks using weights obtained after pretraining on ImageNet
improved the overall accuracy of 10%, which is in line with previous findings [38, 39].
Consequently we simply fine-tune these CNNs on images of vehicles with dimensions
respectively 224× 224 and 227× 227 for AlexNet and VGG-16. These image sizes are chosen
so that we can keep the pretrained weights of the fully connected layers and only retrain the
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Table 7.6: Mean estimation error of the number of vehicles in a 125 m2 × 125 m2 cell.

Dataset ISPRS Potsdam NZAM/ONERA Christchurch

Absolute error (mean error/total from
the ground truth)

3/52 6/66

Relative error 7.9% 9.1%

(a) RGB image (b) Vehicle density (Potsdam)

(c) Ground truth (Potsdam) (d) Predicted vehicles (Potsdam)

Figure 7.7: Visualization of the vehicles from one the ISPRS Potsdam tiles.

last layer from scratch. In practice, considering the GSD of our aerial images, vehicles are
actually around 25× 25. We extract small image patches centered on the detected vehicles
including a spatial context of 16 px in all four directions, this approach resulting the highest
final accuracies. A larger spatial context tend to include other vehicles that might be close to
the one we are zooming in, while a smaller spatial context removes some useful contextual
hints. The image patches are then resized using bilinear interpolation so that their biggest
dimension matches the one expected by the CNN, the smaller dimension being padded using
white noise.

All models are trained (or fine-tuned) for 20 epochs on the dataset using the stochastic
gradient descent with momentum algorithm. We use a batch size of 128 samples for AlexNet
and LeNet and only 32 for VGG-16 as it has larger memory requirements. The learning rate
is initially set to 0.01 and is divided by 10 after 75% of the training has been done. For the
models we fine-tune, we retrain the whole network based on the pretrained weights, except
the last layer which is randomly initialized and trained with a learning rate 10 times higher
than the rest of the network. We apply some Dropout [53] on the fully connected layers to
alleviate overfitting.

Unsurprisingly the performances of the CNN on VEDAI are proportional to their results
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(a) RGB image (b) Vehicle density (Christchurch)

(c) Ground truth (Christchurch) (d) Predicted vehicles (Christchurch)

Figure 7.8: Visualization of the vehicles from one the NZAM/ONERA Christchurch tiles.

Table 7.7: Classification of results of various CNN on VEDAI (in %). OA = Overall Accuracy.

Model Car Truck Boat Tractor Camping-car Van Pick-up Plane Others OA Time (ms)

LeNet 74.3 54.4 31.0 61.1 85.9 38.3 7.7 13.0 47.5 66.3± 1.7 2.1
AlexNet 91.0 84.8 81.4 83.3 98.0 71.1 85.2 91.4 77.8 87.5± 1.5 5.7
VGG-16 90.2 86.9 86.9 86.5 99.6 71.1 91.4 100.0 77.2 89.7± 1.5 31.7

on ImageNet as reported in the Table 7.7. However the most complex model (VGG-16) only
slightly improves the classification metrics and comes with a huge computational overhead.
In practice we could use any CNN for this task, including the expensive ResNet [20]. However
we are satisfied with the accuracy achieved by AlexNet with respect to its execution time.

The Table 7.8 details the vehicle classification results achived on VEDAI using different
preprocessing strategies. Data augmentation using geometrical transforms (noted DA) im-
proves the mobel robustness and generalization ability. The realignment strategy R also
improves the result and makes the network more robust by removing the need to learn a
rotation-invariant classification. The combination of these two strategies result in the best
metrics, therefore we will use both for our final model.

Transfer learning for vehicle classification

At this stage we have an effective vehicle detection model for Potsdam and Christchurch and
a classifier trained on VEDAI. The Table 7.9 details the classification metrics achieved by
the CNN trained on VEDAI and applied on the vehicles from Potsdam and Christchurch.
Results are agregated through cross-validation on the same folds as the ones used for the
semantic segmentation step. Since cars are majoritary in the datasets we are using, we
also report the metrics that are obtained using a reference heuristic corresponding to a
classifier that always predicts“car”. This constant classifier would be right 94% of the
time but would fail on all vehicles that are not cars. The overall model accuracy would be
stellar but its average accuracy over the various classes would be catastrophic. The CNNs
are able to correctly predict several types of vehicles, significantly improving the average
accuracy while maintaining a competitive overall accuracy. Some qualitative examples of
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Table 7.8: Classification results of AlexNet on VEDAI using various preprocessings (in %). OA =
Overall Accuracy, AA = Average Accuracy.

preprocessingCar Truck Boat Tractor Camping-
car

Van Pick-up Plane Others OA AA

∅ 90.4 66.7 80.4 89.5 96.6 63.3 78.7 92.6 75.0 83.9 ± 2.7 81.5± 1.9

DA 88.2 82.2 78.4 82.5 97.4 63.3 85.1 66.7 73.3 85.6± 1.4 77.3± 8.7

R 87.9 71.1 86.3 84.2 97.4 73.3 87.2 100.0 75.0 86.1± 0.9 84.7± 1.7

DA + R 91.4 85.6 88.2 87.6 97.4 70.0 87.2 100.0 81.7 89.0± 0.5 87.7± 1.5

DA = data augmentation, R = realignment.

(a) Van (truck predicted) (b) Van (truck predicted) (c) Voiture (van predicted) (d) Pick-up (van predicted)

Figure 7.9: Successful segmentation but wrong classifications on Potsdam.

successful segmentations but failed subsquent classifications and successful segmentations
and classification are given in the Figs. 7.9 and 7.10.

The average accuracy is lower on Potsdam than on VEDAI because of the strong class-
unbalance and partly due to the numerical sensitivity of the results. Indeed each train/test
fold from the cross-validation contains approximately 15 truck and pick-ups samples. How-
ever the model is trained on VEDAI, where the class repartition is not as much unbalanced.
Therefore the model learns a bias that does not transfer to Potsdam. Moreover the sensors
used for VEDAI, Potsdam and Christchurch are not the same. The environments also differ
(urban for Potsdam and Christchurch, rural for VEDAI) and this changes the semantics of
the spatial context.

Variations due to sensors have been corrected by renormalizing the image colours in
Potsdam and Christchurch. To do so we estimated the pixel-wise statistical moments on
VEDAI to apply them on Potsdam and Christchurch:

Itest :=
Itest −mtest

σ2
test

· σ2
VEDAI + mVEDAI (7.2)

where m is the value of the mean pixel in the dataset, σ the standard deviation and I the
image to transform. This operation is applied channel-wise.

Despite this normalization the variations in appearance and environmental conditions,
including the type of vehicles observed impact the performances. Notably vehicles, trucks
and pick-ups from Christchurch are closer to the american bands present in the VEDAI
datasets than the european vehicles from Potsdam. These variations from the environment
and the objects can make the classifier out of its nominal inference range.

Some kind of regularization or even training on a more diverse vehicle dataset could
alleviate all of these adverse effects. This type of problems in transfer learning are related to
the more general concept of unsupervised domain adaptation [55, 12], which in itself is an
active research field in remote sensing.

Finally, we showed that it is possible to a posteriori perform object-based analysis by
adding structure on the output of an FCN directly from the pixel-wise classification. Notably
we introduced the segment-before-detect pipeline with which we were able not only to detect
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(a) Pick-up (b) Van (c) Camion (d) Voiture

Figure 7.10: Successful segmentations and classifications on Potsdam.

Table 7.9: Vehicle classification results on the augmented ground truth from Potsdam and
Christchurch. OA = Overall Accuracy, AA = Average Accuracy.

Dataset Classifier Car Van Truck Pick-up OA AA

Potsdam
Voitures seulement 100% 0% 0% 0% 94% 25%

AlexNet 98% 66% 67% 0% 95% 58%
VGG-16 92% 66% 75% 33% 89% 67%

Christchurch
Voitures seulement 100% 0% 0% 0% 94% 25%

AlexNet 94% 40% 67% 89% 93% 73%
VGG-16 97% 80% 67% 78% 96% 80%

vehicles in aerial images, but also recognizing their shape and identifying their type. In
particular this method can be used even when the available annotations are coarse, such
as bounding boxes from the NZAM/ONERA Christchurch dataset that were intented for
detection. However as we have seen, finding the object instances require to use an ad hoc
post-processing to regroup pixels that belong the the same object. Indeed, fully convolutional
models are optimized to minimize a loss function that is calculated pixel-wise. Such as loss
function cannot model correctly the spatial relationships that exist between pixels, especially
the fact that several pixels belong to the same object (or the same object part). There seems
to be some benefit to be gained by looking into alternative ways to express and enforce these
dependencies when training the models.

7.2 Distance transform regression for semantic segmentation

7.2.1 Semantic labeling and distance transforms

As we have seen in the previous section, it is possible to reconstruct a posteriori the structure
at the object level of the semantic maps inferred by an FCN. However the literature often
echoes problems related to blurry inter-class boundaries or even noisy segmentation that
require post-processing regularizations to smooth the semantic maps [60, 9] or even ad hoc
heuristics such as our segment-before-detect pipeline.

The computer vision community looked into various post-processing strategies that
might improve segmentation edges and enforce geometrical constraints to match more
closely the ground truth. Often, works on topic rely on graphical models added on top of the
network [33] or expert knowledge [30, 5]. In particular, instance segmentation models have
been designed to combine geometrical object localization with semantic recognition [21, 13].

We present here a direct approach that introduces an implicit regularization embedded
in the ground truth representation. Indeed we suggest to use the regression of the distance
transform computed on the ground truth semantic masks as an auxiliary task. Distance
transforms express not only the fact that a pixel belong to a specific class, but also its
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(a) Binary mask. (b) Signed distance transform (c) Truncated and normalized SDT.

(d) Binary mask. (e) Signed distance transform (f) Truncated and normalized SDT.

Figure 7.11: Equivalent representations of annotated segmentations.

proximity to other classes of interest and therefore can be used to model relationships
between objects, a information more complete than the usual binary masks. This method is
inspired by many works that have looked into using geometrical primitives for regularization
in semantic segmentation, such as predicting object orientations [56] or the position of their
center of mass [17]

By lightly modifying existing segmentation networks, we are able to obtain segmentations
that are smoother without post-processing or prior knowledge.

We validate our approach on several fully convolutional architectures and for various
applications in urban scene understanding, 2.5D image segmentation and Earth Observation.

Regularization through distance transform regression

The distance transform is an operation that transforms a binary mask into a strictly equivalent
continuous representation. In our case, we work with signed truncated distance transform
that we normalize in [−1,+1]. These reprsentations of the annotations are illustrated in
the Fig. 7.11. We suggest that, although equivalent to the binary masks, this information
expresses more explicitely the spatial structure of the images, since each pixel now contains
its spatial distance to all classes of interest. This explicit representation makes more apparent
the geometry of the scene as it is clear if a pixel is located along a class boundary or in the
middle of an object. We argue that regressing the signed distance transforms (SDT) as an
auxiliary task in semantic segmentation network has beneficial effects on the segmentation
metrics.
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Figure 7.12: Multi-task learning (pixel-wise classification and distance transfrom regression). The
convolutional layers are in blue, non-linear activations are in green and activation maps are in brown.

Distance transforms

Distance transforms (or distance maps) of a binary image assign to each pixel of the grid its
distance to the nearest point that belongs to the mask of postivie values. This distance can be
calculated based on various metrics, such as Manhattan distance or the euclidean distance.
By convention, elements that belong to the foreground (positive mask) have a distance of 0.
For example, the euclidean distance transform D maps an imagee I of shape M ×N with a
postivie mask I+ into a distance map D(I) related by:

∀i, j ∈M ×N, D(I)[i, j] = min
Ii′ ,j′∈I+

(‖ I[i, j]− I[i′ , j ′] ‖) . (7.3)

We will use in practice the signed distance transform [q._z._ye_signed_1988] that maps
for each foreground pixel its positive distance to the nearest background pixel and for each
background pixel the opposite of its distance to the nearest foreground pixel. Mathematically,
it is defined as the transform Ds that maps an image I to the distance map:

∀i, j ∈M ×N, Ds(I)[i, j] =

+minIi′ ,j′∈I−(‖ I[i, j]− I[i′ , j ′] ‖), if I[i, j] ∈ I+,

−minIi′ ,j′∈I+(‖ I[i, j]− I[i′ , j ′] ‖), if I[i, j] < I+.
(7.4)

Usual semantic segmentation annotations exists in the “one binary mask per class format.
Therefore one can convert these labels into continuous SDT counterparts. Let us stress
that there is no information loss in this process, as the binary masks can be retrieved
exactly by a simple thresholding of the SDT. We apply the signed distance transform to the
semantic segmentation annotations using the exact linear-time algorithm from Maurer, Qi,
and Raghavan [36].

To reduce side effects when pixels are too far from other objects, therefore moving out
of the network receptive field, we add a saturation to the distances that we compute. More
specifically the SDT is dividided by a scale factor – depending on the network receptive field
– and then normalized in [−1,+1] using the hardtanh which effectively clips the values going
over the positive threshold (or under the negative one). These different representations are
pictured in the Fig. 7.11.

7.2.2 Multi-task learning

The direct regression of the SDT does not improve the segmentation results compared to the
usual dense pixel-wise classification in our preliminary experiments. However we suggest the
employ of a multi-task learning strategy in which the network is trained both on pixel-wise
classification and SDT regression.

More specifically, we alter the network architecture to first perform the regression of the
SDT; then we add a new convolutional layer that fuses activations from the previous layers
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with thse predicted distance maps in order to obtain the final classification (i.e. the semantic
maps). The full network is then trained in a multi-task fashion, the SDT regression being
used as a proxy task for classification.

The network is modified as follow. The last layer, usually followed by a softmax, is here
used as a regression layer to predict the SDT. Since the distance havee been normalized
in [−1,+1], this layer uses the hardtanh non-linearity. Then we concatenate the activations
from previous layers to the SDT predicted. The resulting tensor is fed to an additional
convolutional layer followed by a softmax that performs the pixel-wise classification. The
complete architecture is detailed in the Fig. 7.12. To achieve a fair comparison between the
different models, all baselines used in this work include the same additional convolutional
layer so that both original and altered networks contain the same number of trainable
parameters.

The loss functions used in this work are the negative log-likelihood (NLL) expressed as
the cross-entropy for classification and the L1 for distance regression. Let Zseg ,Zdist ,Yseg ,Ydist
respectively denote the classification after softmax, the predicted distance map, the ground
truth annotations and the actual distance map. The global cost function we aim to minimize
is:

Ltotale = NLL(Zseg ,Yseg ) +λ · L1(Zdist ,Ydist) (7.5)

where λ is a balancing hyperparametere that controls the regularization strength.

7.2.3 Experiments

To evaluate the effect of the distance transform regression, we train several networks based
on either the SegNet [3] or PSPNet [59] reference architectures using various configurations
ranging from pure regression to pure classification.

The SegNet encoder-decoder architecture [3] has already been detailed in Chapter 3.
PSPNet [59] is a fully convolutional architecture that outperformed the current state of the
art on several semantic segmentation datasets [11, 15]. Is is built on the ResNet model [20]
and includes the concenation of a pyramidal activation tensor to learn from multiple spatial
contexts. In our case we consider the reduced PSPNet based on the ResNet-101 model. As
ResNet-101 generates feature maps at resolution 1:32, the resulting tensors are upsampled
by deconvolution.

Datasets

Table 7.10: Cross-validated results on the ISPRS datasets (multi-task). Values reported indicate the
overall accuracy and the class-wise F1 score.

Method City Acc. Roads BuildingsLow veg. Trees Cars

SegNet* (regression)
Vaihingen

89.49 91.03 95.60 81.23 88.31 0.00
SegNet* (classification) 90.00 91.98 95.53 80.91 88.07 87.94

SegNet* (multi-task) 90.43 92.46 95.99 81.30 88.34 88.16

SegNet* (classification)
Potsdam

91.85 94.12 96.09 88.48 85.44 96.62
SegNet* (multi-task) 92.22 94.33 96.52 88.55 86.55 96.79

We validate our approach on several datasets to demonstrate its capacity to generalize on
various binary and multi-label classification settings on multiple image types.

ISPRS 2D Semantic Labeling The ISPRS 2D Semantic Labeling dataset [47] is comprised
of the two scenes from Potsdam and Vaihingen already introduced in the previous chapters
and detailed in the Appendix A.1.1. The evaluation is achieved by 3-fold cross-validation.
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INRIA Aerial Image Labeling Benchmark The INRIA Aerial Image Labeling dataset [34]
consists in 360 RGB images of size 5000 px× 5000 px at a 30 cm/px GSD for 10 cities ran-
domly selected on the planet. Half of the cities are selected for training and the relevant
ground truth annotations for building footprints are publicly released. The remainder of the
dataset is kept hidden for evaluation. More details are given in the Appendix A.1.4.

CamVid The CamVid dataset [7] is comprised of 701 images extracted from multiple
videos acquired by a camera embedded in a car with a 360 px× 480 px resolution. We reuse
the reference train/test split [3], i.e. 367 training images, 101 validation images and 233
test images. Annotations have been released for 11 classes of interest such as “building”,
“pedestrian”, “car” or “sidewalk”. More details are listed in the Appendix A.2.1.

SUN RGB-D The SUN RGB-D dataset [52] contains 10 335 RGB images alongside their
depth map. These images have been annotated for 37 classes of interest covering the furniture,
walls, groundl. . . Its goal is to provide a benchmark for semantic segmentation of indoor
autonomous navigation images, with objects located at less than 10 m. More information
regarding this dataset is available in the Appendix A.2.2.

Data Fusion Contest 2015 The Data Fusion Contest 2015 dataset [8] consists in 7 aerial
images of shape 10 000 px× 10 000 px at resolution of 5 cm/px, acquired on the town of
Zeebruges (Belgium). 8 classes of interest (the 6 classes from the ISPRS dataset, water and
boats) are labeled. We keep two images for the test set, one image for the validation set and
the rest is used for training. More details about this dataset are given in the Appendix A.1.2.

Experimental setup

The SegNet and PSPNet-101 architectures are trained and used as follows. SegNet is trained
for 50 000 iterations on batches of size 10. We use the stochastic gradient descent algorithm
with an initial learning rate of 0.01, divided by 10 after 25 000 and 45 000 iterations. The
weights of the encoder are initialized using the pretrained weights of VGG-16 [50] on
ImageNet. The decoder weights are randomly initialized using the policy from He et al. [19].
On the SUN RGB-D dataset, we use the FuseNet model [18] to validate our approach in a
multi-modal setting. This model uses a dual-stream SegNet that learns a joint representation
of both the color image and the depth map (cf. Chapter 5). On aerial images, we perform data
augmentation during training by randomly cropping 256× 256 patches (384× 384 for the
INRIA Aerial Image Labeling dataset) from the high resolution tiles in addition to random
mirroring and flipping. Inference is performed using a sliding window using the same shape
and a 75% overlap.

We train a PSPNet on CamVid for 750 000 iterations on batches of 10 images using
stochastic gradient descent with an initial learning rate of 0.01, divied by 10 after 500 000
iterations. We randomly crop 224× 224 patches from the images and apply random mirroring
(horizontal symetry). Following the practice from [25], we then fine-tune the network on
the full-scale images for 200 000 iterations. Our implementation of PSPNet is based on
ResNet-50 pre-trained on ImageNet and do not use the auxiliary classification loss for deep
supervision [59].

Finally, we use median-frequency balancing to alleviate the class unbalance from SUN
RGB-D and CamVid.

All experiments are performed using the PyTorch library [40]. The SDT are computed on
CPU using the Scipy library [26] are cached in memory on-the-fly to avoid recomputation.
Calculating the SDT slightly slows down the training during the first epoch before they
are stored in memory. For actual high-performance applications, an on-line GPU imple-
mentation [58] could make this high memory overhead disappear while removing the extra
computation time.
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IRRG image Ground truth SegNet (classification) SegNet (multi-task)

Figure 7.13: Excerpt of the segmentation results on the ISPRS Vaihingen dataset.
Colors: white: roads, blue: buildings, cyan: low vegetation, green: trees, yellow: vehicles, red: clutter.

RGB image Ground truth SegNet (classification) SegNet (multi-task)

Figure 7.14: Excerpt of the segmentation results on the ISPRS Potsdam dataset.
Colors: white: roads, blue: buildings, cyan: low vegetation, green: trees, yellow: vehicles, red: clutter.

Results

Models suffixed by an asterisk (“*”) in the Tables 7.10 to 7.12 and 7.14 are those we introduced
and implemented ourselves in this study. The other models are reference baselines from the
state of the art.

ISPRS The cross-validated results on the ISPRS Vaihingen and Potsdam datasets are re-
ported in Table 7.10. All classes seem to benefit from the distance transform regression. On
Potsdam, the class “trees” is significantly improved as the distance transform regression
forces the network to better learn its closed shape, despite the absence of leaves that make the
underlying ground visible from the air. Two example tiles are shown in Fig. 7.13 and Fig. 7.14,
where most buildings strongly benefit from the distance transform regression, with smoother
shapes and less classification noise. Moreover, we also tested to perform regression only on
the Vaihingen dataset, which slightly improved the results on several classes, although it
missed all the cars and had a negative impact overall. It is also worth noting that our strategy
succeeds while CRF did not improve classification results on this dataset as reported in [35].

INRIA Aerial Image Labeling Benchmark Results on the INRIA Aerial Image Labeling
dataset are detailed in the Table 7.11. Using the distance transform regression on this task
significantly improves the IsU score. As pictured in the Fig. 7.15, building shapes are more
regular in the multi-task prediction setting and fit better to the original objects. Buildings that
were already detected are overall cleaner. Our results are competitive with those from other
methods of the first year of the benchmark [23] that use various tricks such as soft-Jaccard
index as a loss function.
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Table 7.11: Building extraction results on the INRIA Aerial Image Labeling dataset.

Method Bellingham Bloomington Innsbruck San Francisco East Tyrol Global

Io Exac. Io Exac. Io Exac. Io Exac. Io Exac. Io Exac.

AMLL [23] 67.14 96.64 65.43 96.73 72.27 96.66 75.72 91.80 74.67 97.70 72.55 95.91
NUS [23] 70.74 97.00 66.06 96.74 73.17 96.75 73.57 91.19 76.06 97.81 72.45 95.90
Raisa [23] 68.73 96.79 60.83 96.23 70.07 96.31 70.64 89.52 74.76 97.64 69.57 95.30
Inria [34] 56.11 95.37 50.40 95.27 61.03 95.37 61.38 87.00 62.51 96.61 59.31 93.93

SegNet*
(classif.)

63.42 96.11 62.74 96.20 63.77 95.44 66.53 89.18 65.90 96.76 65.04 94.74

SegNet*
(multi)

68.92 96.94 68.12 97.00 71.87 96.72 71.17 89.74 74.75 97.78 71.02 95.63

RGB image Ground truth SegNet (classification) SegNet (multi-task)

Figure 7.15: Excerpt of the segmentation results on the INRIA Aerial Image Labeling dataset. True
positives are in green, false postivies are in pink and false negative are in blue. The multi-task setting
produces maps that respect more closely the object structures.

SUN RGB-D We report in the Table 7.12 the detailed segmentation results on the SUN
RGB-D dataset. Moving from the classification FuseNet to the multi-task network imroves
the average precision and the overall accuracy with a very slight decrease in IsU. These results
show that using the distance transform regression can also be useful in multi-modal settings
with dual stream networks. Moreover our results are competitive with those obtained by Qi
et al. [41] using a sophisticated 3D graph convolutional network that learns from a richer
information.

Data Fusion Contest 2015 The Table 7.13 reports semantic segmentation results obtained
by training SegNet with and without SDT regression on the DFC 2015 dataset. As a baseline,
the best approach from the initial contest is also reported [8]. The quantitative improvements
in all metrics are close to those obtained on the ISPRS Vaihingen and Potsdam datasets.
Indeed most classes benefit from the regularization, especially the vegetation; the annotations
on the vegetation are clearly more regular in the ground truth compared to the chaotic nature
of the actual trees. Overall the model accuracy is improved by 0.64% in the multi-task

Table 7.12: Results on the SUN RGB-D dataset (224 px× 224 px images).

Method Accuracy Io Precision

3D Graph CNN [41] - 42.0 55.2
3D Graph CNN [41] (multiéchelle) - 43.1 55.7

FuseNet* [18] 76.8 39.0 55.3
FuseNet* (multi-task) 77.0 38.9 56.5
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Table 7.13: Semantic segmentation results on the DFC 2015 dataset (class-wise F1 scores and overall
accuracy).

Method Acc. Roads Buildings Low veg. Trees Cars Clutter Boats Water

AlexNet
(patch-based) [8]

83.32 79.10 75.60 78.00 79.50 50.80 63.40 44.80 98.20

SegNet
(classification)

86.67 84.05 82.21 82.24 69.10 79.27 65.78 56.80 98.93

SegNet
(multi-task)

87.31 84.04 81.71 83.88 80.04 80.27 69.25 50.83 98.94

Table 7.14: Semantic segmentation results on the CamVid.

Method Io Acc. Building Tree Sky Car Sign Road Pedestrian Fence Pole Sidewalk Biker

SegNet [3] 46.4 62.5 68.7 52.0 87.0 58.5 13.4 86.2 25.3 17.9 16.0 60.5 24.8
DeepLab-LFOV [9] 61.6 – 81.5 74.6 89.0 82.2 42.3 92.2 48.4 27.2 14.3 75.4 50.1
DenseNet56 [25] 58.9 88.9 77.6 72.0 92.4 73.2 31.8 92.8 37.9 26.2 32.6 79.9 31.1

DenseNet103 [25] 66.9 91.5 83.0 77.3 93.0 77.3 43.9 94.5 59.6 37.1 37.8 82.2 50.5

PSPNet* (classification) 60.3 89.3 74.7 64.1 89.0 71.8 36.6 90.8 44.5 38.5 25.4 77.4 50.3
PSPNet* (multi-task) 62.2 90.0 76.2 66.4 88.8 78.0 37.6 90.7 47.2 40.1 28.6 78.9 51.2

setting.

CamVid The test results on the CamVid dataset are reported in Table 7.14 that also includes
a comparison with other methods from the state-of-the-art, notably [25]. Some examples are
shown in Fig. 7.16 where the distance transform regression once again produces smoother
segmentations. The PSPNet baseline is competitive with those other methods and its mean
IoU is improved by 0.5 by switching to the multi-task setting including the distance transform
regression. Most classes benefit from the distance transform regression, with the exception
of the “road” and “sky” classes. This is due to the void pixels, that are concentrated on those
classes and that result in noisy distance labels.

Discussion

To understand better how the weighting between classification and regression intervenes in
the loss function, we train several models with different values for the λ hyperparameter
on the ISPRS Vaihingen dataset. This allows us to adjust the relative influence given to the
SDT regression compared to the classification cross-entropy. As shown in the Table 7.10,
we compare the simultaneous regression and classification to each task alone. In practice,
it appears that SDT regression only obtains lower classification accuracies than the usual
classification setup. This corresponds to the mode λ → +∞, while classification alone
corresponds to λ = 0. We therefore compare the performance achieved by models trained
with intermediate values of λ.

As illustrated in the Fig. 7.17, setting λ > 0 (i.e. taking into account the distance maps)
significantly improves the classification results. Two values seem particularly interesting at
0.5 and 2. The first suffer from a high variance depending on the experiment while the second
is achieves a slightly lower accuracy although more consistently. In practice all values of λ in
the considered range improved the FCN performance, therefore making this hyperparameter
fairly easy to tune.

The multitask learning incorporating the distance transform regression in the semantic
segmentation model helps the network to learn spatial structures. More precisely, it con-
strains the network not only to learn if a pixel is in or out a class mask, but also the Euclidean
distance of this pixel w.r.t the mask. This information can be critical when the filter responses
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Figure 7.16: Examples of semantic segmentation results on the CamVid dataset. From left to right:
RGB image, PSPNet (classification), PSPNet (multi-task), ground truth.

(a) Accuracy improvement with respect to λ. (b) Classification accuracy with respect to λ.

Figure 7.17: Exploration of various values for λ on the ISPRS Vaihingen dataset.

are ambiguous. For example, trees from birdviewX might reveal the ground underneath
during the winter, as there are no leaves, although annotations still consider the tree to
have a shape similar to a disk. Spatial proximity helps in taking these cases into account
and removing some of the salt-and-pepper classification noise that it induces, as shown on
the ISPRS Vaihingen and Potsdam and DFC2015 datasets. Moreover, as the network has to
assign spatial distances to each pixel w.r.t the different classes, it also learns helpful cues
regarding the spatial structure underlying the semantic maps. As illustrated in Fig. 7.15, the
predictions become more coherent with the original structure, with sharper boundaries and
less holes when shapes are supposed to be closed.

Finally, an interesting research direction for the SDT reside in the panopatic segmentation
paradigm [28]. This task consists in performing at the sime time semantic segmentation
and instance segmentation. Indeed objects can be defined instance-wise but many areas and
surfaces (the sky, the ocean, the roads. . . ) cannot be clearly defined as a set of instances.
The distance tranform maps could express these two concepts using the level sets, where
class/instance-boundaries are encoded by the level 0.

The study from the Section 7.1 has been published in an international journal:
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• Nicolas Audebert, Bertrand Le Saux, and Sébastien Lefèvre. “Segment-before-
Detect: Vehicle Detection and Classification through Semantic Segmentation of
Aerial Images”. In: Remote Sensing 9.4 (Apr. 13, 2017), p. 368. doi: 10.3390/
rs9040368

The experiments from the Section 7.2 have been presentend at national conference:

• Nicolas Audebert et al. “Segmentation Sémantique Profonde Par Régression Sur
Cartes de Distances Signées”. In: Reconnaissance Des Formes, Image, Apprentissage
et Perception (RFIAP). Marne-la-Vallée, France, June 2018. url: https://hal.
archives-ouvertes.fr/hal-01809991 (visited on 08/27/2018)
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Conclusion and future works

It is good to have an end to journey toward; but it is the journey that matters, in the
end.

— Ursula Le Guin (The Left Hand of Darkness, 1969)

The plethora of remote sensing data being acquired everyday is a goldmine for the
scientific community. Thanks to the joint effort of multiple actors that invest into Earth
Observation programs, we can access high resolution images of the whole globe at high
frequencies that were unimaginable 20 years ago. In France, aerial images at 20 cm/px GSD
on the whole country are released every 3 years by the IGN, while the CNES performs a
complete observation at 1.5 m/px GSD every year using the SPOT constellation. Meanwhile
the European Copernicus program has deployed the Sentinel-2 satellites which provide us
with weekly multispectral images every 5 days at 10 m/px on the whole globe. Added to
these instutional actors are the many private and military operators (Worldview, Pléiades)
but also the many radar, Lidar and hyperspectrales sensors.

The human resources available to process this data are however largely unsufficient to
transform this mass of raw data into knowledge. Manual photointerpreation is slow and
expensive. Its automation is a major challenge for scientific research today and tomorrow
in ecology, urbanism, meteorology or agriculture. Our goal in this thesis was to propose
machine learning tools suited to the problem of cartography automation. Building on deep
artificial neural networks, we designed statistical models for semantic segmentation of
aerial and satellite images from low to extremely high resolution for a variety of optical
sensors. To leverage ancillary information such as digital surface models and open geographic
datasets, we introduced multi-modal deep network architectures for data fusion that are
able to learn from heterogeneous information. Finally, we showed the current limits of these
approaches on limited and very large-scale datasets and suggested alternatives, notably data
augmentation using generative models and the introduction of anew country-scale dataset
called MiniFrance.

Therefore the works presented in this manuscript allowed us to confirm the position of
deep networks as excellent tools for automatic remote sensing image understanding. These
models reach the accuracies that are reasonably expected by specialists from the applicative
fields. Indeed automating the production of semantic maps from optical images, either in
colour, multispectral or hyperspectral, seems reachable at an industrial scale in a few years,
including in a multi-modal setting. While deep learning for remote sensing was only in
its premises a few years ago, it is now at forefront of the research in Earth Observation.
This thesis contributed to this by reiterating once again that neural networks are the state
of the art for image interpreation, and can be extended to the sensors that are commonly
used in remote sensing and were until then ignored by the computer vision community.
We introduced good practices and guidelines for the deployment of convolutional neural
networks for Earth Observation image understanding by studying extensively the impact
of pretraining, multi-scale learning, data fusion and segmentation regularization. These
techniques, still rarely studied in the beginning of the 2010s, are now established on solid
experimental grounds.

First, we demonstrated that state of the art region-based classification techniques could
be replaced with much more efficient fully convolutional neural networks. Especially we
showed that the unsupervised segmentation pre-processing is on the critical path of semantic
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segmentation and puts an upper bound on the achievable accuracy. We adapted semantic
segmentation neural networks to aerial remote sensing IRRG and RGB images. Then we
extended this approach to Sentinel-2 multispectral satellite images on which we showed that
including spectral bands outside the visible domain significantly improved the classification
results. We also studied deep learning techniques for hyperspectral image classification,
showing that 3D convolutional networks were particularly efficient and effective to process
the hypercubes. These contributions allowed us to produce very accurate semantic maps that
meet the operational requirements of users and consumers of geographic data.

Second, we studied how to introduce ancillary information into image-based deep models
to learn from all available input sources on the scenes of interest. Especially we designed two
multi-modal convolutional network architectures for semantic segmentation that can fuse
data coming from heterogeneous inputs. By combining optical images on the one hand and
digital surface models on the other hand, but also optical images and OpenStreetMap data,
we were able to significantly reduce the error rate of our convolutional networks deployed for
semantic mapping, notably using the residual correction module. We introduced a new way
to take into account OSM data which encourages us to study how to automatically update
this kind of GIS using a bootstrapping approach.

Then, we investigated the behaviour of statistical models on small and large-scale datasets.
In a hyperspectral setting, we noted that very few labeled datasets were available to train
deep networks and that these images were particularly small compared to usual databases.
We therefore designed generative models based on GAN to synthesize new artificial spectra
successfully to generate fake datasets. In addition we validated our semantic mapping
models on several large scale datasets with various properties. Notably we created our own
large-scale high-resolution dataset that covers many urban areas in France. We showed that
the networks we introduced previously were able to scale to the country level and could
generalize to diversified scenes. The introduction of the MiniFrance dataset will allow in the
long run to pretrain supervised networks at the largest scale ever reached for remote sensing
image understanding models.

Finally we studied regularization techniques to structure the semantic maps produced
by the networks, especially for an object-based image analysis framework. We designed a
segment-before-detect approach to locate and recognize vehicles with a fine-grained clas-
sification in aerial images. Our approach is based on the semantic segmentation task and
results in outputs the precise shapes of the vehicles in addition to their location. Overall it
generated less false postivies than the previous state of the art in remote sensing. Moreover
we introduced an alternative formulation of the semantic segmentation task by expressing
it as the regression of signed distance maps. This allowed us to implicitly regularize and
enforce some geometrical structure on the semantics maps produced by deep networks.
This improved quantitatively and qualitatively the resulting segmentation which modeled
more accurately the relationships between pixels.This scheme also gives a research direction
to solve in an unified way to panoptic segmentation of images, either natural or remotely
sensed, in which we aim to simultaneously identify object instances and non-structured areas.
These findings open the door to new research direction rarely – even never – investigated up

until now. Although this thesis focused on image semantic segmentation, let us recall that
geographical analysis often looks at temporal aspects. From the application viewpoint many
research topics involve understanding the evolution of the maps, from typhoon monitoring
to understanding the dynamics of deforestation. However if we want to detect changes that
occurred between two acquisitions or produce a complete time series, generating complete
semantic maps for each acquisition could become expensive quickly. On the opposite image
comparison techniques or time series classification methods, for example using recurrent
neural networks, could be used to produce incremental maps at each timestep that leverage
the history of a scene in a more efficient and more expressive way.

Equally interesting is the topic of data fusion. Here we focused on multi-modal architec-
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Chapter 8 Conclusion and future works

tures taking rasters as input, but it would be interesting to extend these concepts to sparse 3D
data or even non-structured information such as street-level paranoma or textual annotations.
Some works have already strated using modular neural networks that can learn from multiple
data sources, even with missing data. This is especially important for optical sensors that
are sensitive to weather conditions and cloud cover, since SAR data could alleviate most
of these problems for automated cartography at high frequency. Nonetheless radar signals
are very different from the usual colour images and as complex signals, they would require
approaches specifically tailored to the physics of these sensors. For scene interpreation,
learning from geometry either by reconstruction from an image or by leveraging additional
sensors (e.g. Lidar) would help produce high resolution 3D semantic models of cities. In
remote sensing this encourages the community to study approaches combining geometry
and semantics, at the edge between photogrammetry and semantic segmentation, for tasks
such as 3D modeling, orthorectification and co-registering.

Finally, if deep learning has made it possible to reach excellent empirical performance,
the question of how to help final users interpret these results remain a major obstacle before
a large-scale adoption. The representations learnt by the statistical models are difficult to
reuse and understand by human users and do not carry a complete information. Interpreting
the models, especially to help experts understand why the models predicted such or such
class, is a prerequisite for an efficient collaboration between the users and the machine. This
requires two elements: a) matching the features learnt by the neural network to high level
semantic concepts graspable by the human user, b) make it clear how the model took a
specific decision and what features are factored the most in this choice. Particularly, this
would greatly help active learning process that include human knowledge when training
the network, both regarding its expertise regarding the task but also how the user usually
decides, so that the machine can mimick it and learn from both.
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One accurate measurement is worth a thousand expert opinions.

— Grace Hopper

A.1 Remote sensing datasets

There are many classification datasets focused on optical remote sensing data. Let us cite
to this end the UC Merced dataset [13], comprised of 2100 aerial images for 21 land cover
classes, Brazilian Coffe [8] containing SPOT images for crop classification and SAT-4/SAT-
6 [1] containing respectively 500 000 and 405 000 aerial images for various land use classes.
These datasets share two drawbacks. First the images are quite small (256 px× 256 px for
UC Merced and Brazilian Coffe, 28 px× 28 px for SAT) and the annotations are scarce. Indeed
these datasets have been conceived for image classification and therefore are not suited to
cartography, which is closer to semantic segmentation. However several datasets with dense
ground truth annotations have been released.

A.1.1 ISPRS 2D Semantic Labeling

RGB image nDSM Ground truth

RGB image nDSM Ground truth

Figure A.1: Ortho-rectified images and nDSM on the ISPRS Vaihingen dataset.

The ISPRS 2D Semantic Labeling dataset [11] consists in two sets of extremely high
resolution (EHR) aerial images released by the working group (WG) II/4 of the International
Society for Photogrammetry and Remote Sensing. Both acquistions are urban scenes that
have been labeled for semantic segmentation in five classes: impervious surfaces (roads,
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RGB image nDSM Ground truth

RGB image nDSM Ground truth

Figure A.2: Ortho-rectified images and nDSM on the ISPRS Potsdam dataset.

sidewalks, parking lots. . . ), buildings, low vegetation, trees and vehicles. A reject class is
also labeled1 containing the urban clutter (benches, garbage bins, containers. . . ) and other
materials (basketball courts, construction sites, fountains. . . ).

There are two scenes in the dataset. scènes. The first one is based on an aerial acquisitions
over the city of Vaihingen (Germany) and consists in a mosaic of 33 IRRG ortho-rectified
tiles at a spatial resolution of 9 cm/px. The optical acquisition is completed by a Lidar point
cloud at the same GSD from which a DSM has been rasterized. A pre-computed nDSM [4]
calculated from the DSM is also publicly available. The ortho-images are published in
the TIFF format, encoded on 8 bits integers, while the DSM is encoded on 32 bits floats.
All the data have been co-registered on the same pixel grid. The images are approximately
2600 px× 1900 px in average, i.e. an approximate surface of around 40 000 m2. Vaihingen is a
medium-sized town (28 853 inhabitants in 2009), characterized by a an average urbanization
consisting in mostly individual houses and green urban areas.

The second scene is also an aerial acquisition, but on the city of Potsdam (Germany)
and consists in a mosaic of 38 IRRGB tiles ortho-rectified at a spatial resolution of 5 cm/px
performed by BSF Swissphoto. The dataset is released by the Deutsche Gesellschaft für Pho-
togrammetrie, Fernerkundung und Geoinformation (DGPF)2. All tiles have the same dimensions
(6000 px× 6000 px, i.e. a surface of 90 000 m2). An DSM and its corresponding nDSM are
also available, rasterized from a Lidar point cloud. Dense annotations are published for the
same classes as the previous dataset on 24 images. Once again, all modalities have been
co-registered on the same pixel grid and images are released as 8 bits integer TIFF while
the digital surface models are released as 32 bits floats. Potsdam is a quite large urban
town (161 468 inhabitants in 2013), characterized by many large buildings and a dense road

1But not evaluated.
2http://www.ifp.uni-stuttgart.de/dgpf/DKEP-Allg.html
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Chapter A Datasets

network. There is also a water channel and many active construction sites at the time the
images were acquired.

Some representative samples from the two acquisitions are pictured in the Figs. A.1
and A.2. The number of pixels in each class is reported in the Fig. A.10.

The images for which the annotations are not publicly released are still labeled, although
the ground truth is used to evaluate blindly the submissions to the benchmark. The WG II/4
commission from the ISPRS manages a public leaderboard34 that reports the official results
obtained by various methods from the state of the art.

A.1.2 Data Fusion Contest 2015

RGB image nDSM Ground truth

RGB image nDSM Ground truth

Figure A.3: Ortho-rectified images and nDSM from the DFC 2015 dataset.

The DFC 2015 [3] dataset is the product of a data fusion competition organized by
the GRSS workgroup from the IEEE. This dataset consists in a mosaic of 7 ortho-rectified
colour images of size 10 000 px× 10 000 px with a GSD of 5 cm/px, i.e. a surface per tile of
250 000 m2. The acquisition was realized on the port area of Zeebruges (Belgium) in March,
2011 by the Communication, Information, Systèmes & Senseurs (CISS) department of the École
royale militaire de Belgique. There is also a Lidar acquistion of about 65 points/m2 separated
by 10 cm. The colour data are released in the TIFF (8 bits integers) format and the Lidar is
released as a rasterized DSM (32 bits floats) and a point cloud. It is a urban scene focused
mostly on port installations and structures.

A dense labeling of the area has been performed by the Office national d’études et de
recherches aérospatiales (ONERA) [5] for the classes boats, cars, low vegetation, trees, buildings,

3http://www2.isprs.org/commissions/comm2/wg4/vaihingen-2d-semantic-labeling-contest.html
4http://www2.isprs.org/commissions/comm2/wg4/potsdam-2d-semantic-labeling.html
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(a) RGB image

(b) nDSM

(c) Hyperspectral image (false colours)

(d) Ground truth

Figure A.4: Training data from the DFC 2018.

water and impervious surfaces. The Fig. A.3 illustrates some images extracted from the
dataset and the Fig. A.11a reports the distribution of the pixels in the different classes.

A public leaderboard for this dataset is managed by the IEEE GRSS5 to allow the compar-
ison of several classification techniques.

A.1.3 Data Fusion Contest 2018

The DFC 2018 dataset [6] is a also a product of the Data Fusion Contest (DFC) organized by
the IEEE GRSS. It consists in 14 ortho-rectified aerial RGB images at VHR (5 cm/px) of size
12 000 px× 12 000 px and one large hyperspectral image with 48 bande at 1 m/px between

5http://dase.ticinumaerospace.com/
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380 and 1050 nm. Also available is a multispectral Lidar acquisition with a resolution of
0.5 m/px, from which a nDSM has been rasterized. All the data are georeferenced and have
been co-registered. The data have been acquired by the National Center for Airborne Laser
Mapping over the city of Houston (United States of America) in February, 2017. The image
covers mostly Houston University and its surroundings. This is a very urbanized scene
including massive installations (train station and railroads, baseball stadium). Partially dense
annotations have been released on half the dataset for several urban classes of interest, the
other half is kept hidden for the evaluation phase. The training set is pictured in the Fig. A.4
and the Fig. A.11b reports the pixel distrbution in the different classes.

A public leaderboard is maintained by the IEEE GRSS to facilitate comparison between
various classification techniques.

A.1.4 Inria Aerial Image Labeling

Ortho-image (Chicago) Ground truth (Chicago) Ortho-image (Vienna) Ground truth (Vienna)

Figure A.5: Image samples from the Inria Aerial Image Labeling.

The Inria Aerial Image Labeling dataset [7] contains 360 RGB ortho-rectified images
of size 5000 px× 5000 px with a 30 cm/px GSD, i.e. a surface of 2.25 km2. Images have
been agregated from the USGS database for Austin, Chicago, Kitsap County, Bellingham,
Bloomington and San Francisco and from various regional Austrian geographic agencies
for Tyrol, Vienna and Innsbruck. All imags are ortho-rectified aerial images that have
been resampled at 30 cm/px and released in 8 bit colour format. The building footprints
annotations have been obtained from local cadastres. Half of the images can be used freely to
train building extraction models, the remainder being for evaluation by the dataset’s authors.
A few images and their ground truth are shown in the Fig. A.5.

Among the cities present in the dataset, some are large conurbations characterized by a
high building density that mixes personal housing, large-scale constructions (trains tations,
hospitals, factories. . . ) and high-rises. On the opposite, other areas are sparsely populated
with an important relief and lots of vegetation, especially in Tyrol. This diversity of the
observed areas is intentional and aims to evaluate the models capacity to generalize to
multiple environments.

The organizers manage a public leaderboard6 to compare the results obtained by various
methods.

A.1.5 VEDAI

The Vehicle Detection in Aerial Imagery (VEDAI) database [10] is a collection of ortho-
rectified aerial images, initially published by the Automated Geographic Reference Center from
Utah. The images were acquired in spring 2012 at a 12.5 cm/px GSD on 4 channels: RGB
and infrared. Data is encoded on 8 bit integers. The original images have been split in 1210

6https://project.inria.fr/aerialimagelabeling/leaderboard/
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Figure A.6: Sample images from the VEDAI dataset.

tiles of shape 1024 px× 1024 px. A downsampled version of the dataset at 25 cm/px using
tiles of sizes 512 px× 512 px also exist.

The vehicles present in the imagse have been labeled for detection using rectangular
bounding boxes, accompanied by a label corresponding to the vehicle type. Nine classes of
interest have been identified: plane, boat, camping-car, car, pick-up, tractor, truck, van and a
“other” class. There are also annotations regarding the coordinates of the center of the vehicle
and the angle corresponding to its main orientation.

This dataset covers mostly rural areas with a low vehicle density. The images exhibit a
large contextual diversity, from parking lots to small airports, highways and field roads, but
also crops and small houses. Some examples are illustrated in the Fig. A.6.

A.1.6 NZAM/ONERA Christchurch

The NZAM/ONERA Christchurch dataset is comprised of 4 RGB images, ortho-rectified at a
spatial resolution of 10 cm/px acquired after the earthquake that hit the city of Christchurch
(New-Zeland) on February 22, 2011. The images have been released under the Creative
Commons Attribution 3.0 license by the New Zealand’s Land Information Office 7. All images
(≈ 5000× 4000px) have been labeled by the ONERA/DTIS [9] for the following classes:
“buildings” (797 objects), “vehicles” (2357 objects) and “vegetation” (938 objects). These
objects are annotated by a polygonal bounding box, i.e. the annotations are coarser than
the pixel-accurate ground truthes from the ISPRS datasets, for example. Sample images are
illustrated in the Fig. A.7.

7http://www.linz.govt.nz/land/maps/linz-topographic-maps/imagery-orthophotos/
christchurch-earthquake-imagery
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Figure A.7: Images and annotations extracted from the NZAM/ONERA Christchurch dataset.

A.2 Jeux de données en interprétation de scènes

A.2.1 CamVid

The CamVid dataset (Cambridge-driving Labeled Video Database) [2] is an image database
extracted at 1 Hz from an RGB video of a 10-minutes drive in a car in the city of Cambridge
(United-Kingdom). 367 training images and 233 test images are collected at a resolution
of 360 px× 480 px from the videos and manually labeled for 11 clases of interest such as
roads, buildings, other vehicles, pedestrians, traffic signs, sidewalks and so on. Overall these
images are representative of autonomous driving situations at a moderate pace in a urban
environment with many moving objects. The Fig. A.8 illustres some labeled images from the
training set.

A.2.2 SUN RGB-D

The SUN RGB-D dataset [12] consists in 10 335 indoor images Red-Green-Blue + Depth
acquired using various sensors (Kinect, Xtion, RealSense). Every image is actually a pair of
RGB and grayscale depth map. All images have been annotated pixel-wise for 37 classes
of interest as objects or surfaces such as “chair”, “ground”, “wall” or “table”. Images are
generally resized at 224 px× 224 px. Overall 146 617 objects in 2D have been labeled as
non-overlapping polygons, which results for every image in a 2D semantic segmentation
ground truth (with some unlabeled pixels). Other annotations are also availabel such as the
scene category in 2.5D from 47 possible categories or 800 types of 3D objects identified by a
bounding box. Sample images and ground truthes are illustrated in the Fig. A.9.
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Figure A.8: RGB images (first row) and pixel-wise annotations (second row) extracted from the
CamVid dataset.

Figure A.9: RGB images, depth maps and annotations from the SUN RGB-D dataset.
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Figure A.10: Pixel distribution amongst the classes of the ISPRS dataset.
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(a) Pixel distribution amongst the classes of the DFC 2015 dataset.

(b) Pixel distribution amongst the classes of the DFC 2018 dataset.

Figure A.11: Pixel distribution amongst the classes of the DFC datasets.

X



Bibliography
[1] Saikat Basu et al. “DeepSat: A Learning Framework for Satellite Imagery”. In: Pro-

ceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic
Information Systems. SIGSPATIAL ’15. New York, NY, USA: ACM, 2015, 37:1–37:10.
isbn: 978-1-4503-3967-4. doi: 10.1145/2820783.2820816. url: http://doi.acm.
org/10.1145/2820783.2820816 (cit. on p. I).

[2] Gabriel J. Brostow, Julien Fauqueur, and Roberto Cipolla. “Semantic Object Classes
in Video: A High-Definition Ground Truth Database”. In: Pattern Recognition Letters.
Video-based Object and Event Analysis 30.2 (Jan. 15, 2009), pp. 88–97. issn: 0167-
8655. doi: 10.1016/j.patrec.2008.04.005. url: http://www.sciencedirect.
com/science/article/pii/S0167865508001220 (cit. on p. VII).

[3] Manuel Campos-Taberner et al. “Processing of Extremely High-Resolution LiDAR and
RGB Data: Outcome of the 2015 IEEE GRSS Data Fusion Contest Part A: 2-D Contest”.
In: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 9.12
(Dec. 2016), pp. 5547–5559. issn: 1939-1404. doi: 10.1109/JSTARS.2016.2569162
(cit. on p. III).

[4] Markus Gerke. Use of the Stair Vision Library within the ISPRS 2D Semantic La-
beling Benchmark (Vaihingen). International Institute for Geo-Information Science
and Earth Observation, 2015. url: https://www.researchgate.net/profile/
Markus_Gerke/publication/270104226_Use_of_the_Stair_Vision_Library_

within_the_ISPRS_2D_Semantic_Labeling_Benchmark_(Vaihingen)/links/

54ae59c50cf2828b29fcdf4b.pdf (cit. on p. II).

[5] Adrien Lagrange et al. “Benchmarking Classification of Earth-Observation Data:
From Learning Explicit Features to Convolutional Networks”. In: 2015 IEEE Interna-
tional Geoscience and Remote Sensing Symposium (IGARSS). 2015 IEEE International
Geoscience and Remote Sensing Symposium (IGARSS). July 2015, pp. 4173–4176.
doi: 10.1109/IGARSS.2015.7326745 (cit. on p. III).

[6] Bertrand Le Saux et al. “2018 IEEE GRSS Data Fusion Contest: Multimodal Land
Use Classification [Technical Committees]”. In: IEEE Geoscience and Remote Sensing
Magazine 6.1 (Mar. 2018), pp. 52–54. issn: 2473-2397. doi: 10.1109/MGRS.2018.
2798161 (cit. on p. IV).

[7] Emmanuel Maggiori et al. “Can Semantic Labeling Methods Generalize to Any City?
The Inria Aerial Image Labeling Benchmark”. In: Proceedings of the IEEE International
Symposium on Geoscience and Remote Sensing (IGARSS). IEEE International Sympo-
sium on Geoscience and Remote Sensing (IGARSS). July 23, 2017. doi: 10.1109/
IGARSS.2017.8127684. url: https://hal.inria.fr/hal-01468452/document
(cit. on p. V).

[8] Otávio Penatti, Keiller Nogueira, and Jefersson A. dos Santos. “Do Deep Features
Generalize from Everyday Objects to Remote Sensing and Aerial Scenes Domains?”
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Work-
shops (CVPRW). 2015 IEEE Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW). June 2015, pp. 44–51. doi: 10.1109/CVPRW.2015.7301382
(cit. on p. I).

XI

https://doi.org/10.1145/2820783.2820816
http://doi.acm.org/10.1145/2820783.2820816
http://doi.acm.org/10.1145/2820783.2820816
https://doi.org/10.1016/j.patrec.2008.04.005
http://www.sciencedirect.com/science/article/pii/S0167865508001220
http://www.sciencedirect.com/science/article/pii/S0167865508001220
https://doi.org/10.1109/JSTARS.2016.2569162
https://www.researchgate.net/profile/Markus_Gerke/publication/270104226_Use_of_the_Stair_Vision_Library_within_the_ISPRS_2D_Semantic_Labeling_Benchmark_(Vaihingen)/links/54ae59c50cf2828b29fcdf4b.pdf
https://www.researchgate.net/profile/Markus_Gerke/publication/270104226_Use_of_the_Stair_Vision_Library_within_the_ISPRS_2D_Semantic_Labeling_Benchmark_(Vaihingen)/links/54ae59c50cf2828b29fcdf4b.pdf
https://www.researchgate.net/profile/Markus_Gerke/publication/270104226_Use_of_the_Stair_Vision_Library_within_the_ISPRS_2D_Semantic_Labeling_Benchmark_(Vaihingen)/links/54ae59c50cf2828b29fcdf4b.pdf
https://www.researchgate.net/profile/Markus_Gerke/publication/270104226_Use_of_the_Stair_Vision_Library_within_the_ISPRS_2D_Semantic_Labeling_Benchmark_(Vaihingen)/links/54ae59c50cf2828b29fcdf4b.pdf
https://doi.org/10.1109/IGARSS.2015.7326745
https://doi.org/10.1109/MGRS.2018.2798161
https://doi.org/10.1109/MGRS.2018.2798161
https://doi.org/10.1109/IGARSS.2017.8127684
https://doi.org/10.1109/IGARSS.2017.8127684
https://hal.inria.fr/hal-01468452/document
https://doi.org/10.1109/CVPRW.2015.7301382


Bibliography

[9] Hicham Randrianarivo, Bertrand Le Saux, and Marin Ferecatu. “Urban Structure
Detection with Deformable Part-Based Models”. In: 2013 IEEE International Geoscience
and Remote Sensing Symposium - IGARSS. 2013 IEEE International Geoscience and
Remote Sensing Symposium - IGARSS. July 2013, pp. 200–203. doi: 10.1109/IGARSS.
2013.6721126 (cit. on p. VI).

[10] Sébastien Razakarivony and Frédéric Jurie. “Vehicle Detection in Aerial Imagery: A
Small Target Detection Benchmark”. In: Journal of Visual Communication and Image
Representation 34 (2016), pp. 187–203. doi: 10.1016/j.jvcir.2015.11.002. url:
http://www.sciencedirect.com/science/article/pii/S1047320315002187 (cit.
on p. V).

[11] Franz Rottensteiner et al. “The ISPRS Benchmark on Urban Object Classification and
3D Building Reconstruction”. In: ISPRS Annals of the Photogrammetry, Remote Sensing
and Spatial Information Sciences 1 (2012), p. 3. url: https://t3sec3.rrzn.uni-
hannover.de/cmsv021a.rrzn.uni-hannover.de/uploads/tx_tkpublikationen/

isprsannals-I-3-293-2012.pdf (cit. on p. I).

[12] Shuran Song, Samuel P. Lichtenberg, and Jianxiong Xiao. “SUN RGB-D: A RGB-D
Scene Understanding Benchmark Suite”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). June 2015, pp. 567–576. doi: 10.1109/CVPR.2015.
7298655 (cit. on p. VII).

[13] Yi Yang and Shawn Newsam. “Bag-of-Visual-Words and Spatial Extensions for Land-
Use Classification”. In: Proceedings of the 18th SIGSPATIAL International Conference
on Advances in Geographic Information Systems. GIS ’10. New York, NY, USA: ACM,
2010, pp. 270–279. isbn: 978-1-4503-0428-3. doi: 10.1145/1869790.1869829. url:
http://doi.acm.org/10.1145/1869790.1869829 (cit. on p. I).

XII

https://doi.org/10.1109/IGARSS.2013.6721126
https://doi.org/10.1109/IGARSS.2013.6721126
https://doi.org/10.1016/j.jvcir.2015.11.002
http://www.sciencedirect.com/science/article/pii/S1047320315002187
https://t3sec3.rrzn.uni-hannover.de/cmsv021a.rrzn.uni-hannover.de/uploads/tx_tkpublikationen/isprsannals-I-3-293-2012.pdf
https://t3sec3.rrzn.uni-hannover.de/cmsv021a.rrzn.uni-hannover.de/uploads/tx_tkpublikationen/isprsannals-I-3-293-2012.pdf
https://t3sec3.rrzn.uni-hannover.de/cmsv021a.rrzn.uni-hannover.de/uploads/tx_tkpublikationen/isprsannals-I-3-293-2012.pdf
https://doi.org/10.1109/CVPR.2015.7298655
https://doi.org/10.1109/CVPR.2015.7298655
https://doi.org/10.1145/1869790.1869829
http://doi.acm.org/10.1145/1869790.1869829


B
Ap

pe
nd

ix
Code

It’s still magic even if you know how it’s done.

— Terry Pratchett (A Hat Full of Sky, 2004)

B.1 FCN for semantic mapping

Website: https://github.com/nshaud/DeepNetsForEO
This open source code implements the reference SegNet model from Chapter 3 for

semantic segmentation of RGB and multispectral aerial and satellite images. Written in
Python, this software uses the Pytorch library to run both the model training and inference
either on GPU or CPU. Some parameters can be configured to reproduce the experiments
described in the Chapters 3 to 5 on reference or custom datasets.

B.2 DeepHyperX

Website: https://gitlab.inria.fr/naudeber/DeepHyperX
This open source code is the modular toolbox for hyperspectral image classification

described in the Chapter 4. Written in Python, this software relies on the Pytorch and
scikit-learn libraries. It is designed for two types of audience:

• Machine learning experts that aim to design, implement and validate new deep neural
network architectures for hyperspectral data in a standard framework,

• Hyperspectral specialists that want to apply state of the art neural networks on their
data.

B.3 MiniFrance

Website: https://gitlab.inria.fr/naudeber/FranceDataset
This open source code gathers the scripts used to build the MiniFrance dataset described

in the Chapter 6. Written in Python and bash, these scripts can be used to convert the images
from the BD ORTHO and rasterize the data from the French cadastre and UrbanAtlas on the
same mosaic using the rasterio, fiona and geopandas libraries.

B.4 HyperGANs

Website: https://github.com/nshaud/HyperGANs
This open source code is a reference implementation of the conditioned Wasserstein-

GAN for synthetic spectrum generation described in the Chapter 6. Written in Python, this
software uses the Pytorch library. It can be used to reproduce the experiments in spectrum
generation described in this manuscript on various datasets.
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B.4. HyperGANs
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