Fusion of Heterogeneous Data in Convolutional Networks for Urban Semantic Labeling

Nicolas Audebert^{1,2}, Bertrand Le Saux¹, Sébastien Lefèvre²

¹ ONERA, *The French Aerospace Lab* ² Université de Bretagne-Sud/IRISA

March 6, 2017

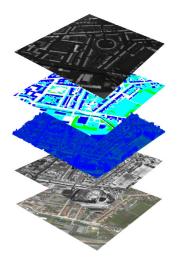
Earth Observation & semantic mapping

Multimodal semantic segmentation with deep nets

Conclusion

Earth Observation & semantic mapping

Earth Observation



Remote sensing data

Remote sensing data has grown abundant over the years

- ▶ Satellite and airborne images...
- with auxiliary products (e.g. DSM)
- …and annotations !

Semantic mapping

IRISA

Build meaningful maps from data

- Dense classification of every pixel
- Thematic maps: vegetation type, building/roads extraction, ...
- First step for further analysis: urban planning, biomass estimation, traffic analysis...

Deep learning

Why deep learning ?

IRISA

- Convolutional neural networks perform significantly better than any previous methods for most vision-based tasks (classification, segmentation, ...)
- Computing power (thanks to GPUs) is now cheap enough to train very deep models on huge datasets
- Annotated remote sensing data is largely available for supervised learning

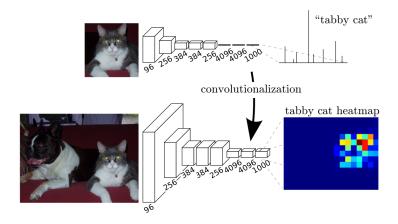
Multimodal semantic segmentation with deep nets

Dataset

ISPRS Vaihingen

- 9 cm/pixel resolution
- IRRG ortho-rectified images
- Lidar point cloud
 - DSM
 - NDSM
- Dense pixel-wise annotations
 - roads, buildings, low vegetation, trees, vehicles, clutter

Traditional semantic segmentation

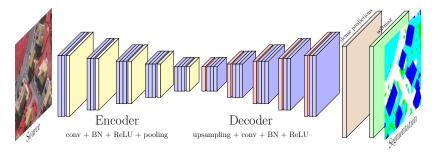


Fully Convolutional Networks for Semantic Segmentation, Long et al., CVPR'15.

March 6, 2017

nicolas.audebert@onera.fr

Traditional semantic segmentation



SegNet, Badrinarayanan et al., 2015.

Preprocessing

HR images are processed by a 128×128 sliding window with a stride of 32px (75% overlap).

- + Lower GPU memory consumption
- + Data augmentation (training)
- + Averaging on the overlapping pixels (testing)
- Longer processing time

Optimization

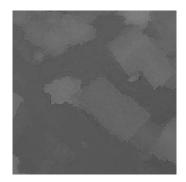
6 IRISA

SGD with momentum and standard backpropagation

 Log-loss averaged on the patch pixels (no spatial regularization)

Problem

We have optical data (IRRG) and Lidar data (DSM/NDSM). How can we use all this information together?

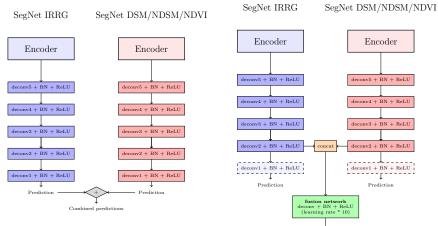


NDSM helps discriminate between roads/buildings, low vegetation/trees... **(**) IRISA

March 6, 2017

nicolas.audebert@onera.fr

Multimodal semantic segmentation



March 6, 2017

Naive fusion: averaging the two predictions

IRISA

ONERA

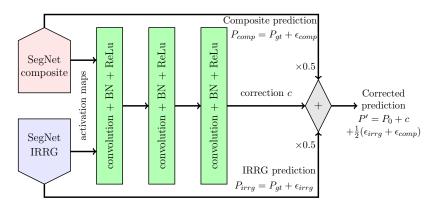
Learning based fusion

Combined predictions

nicolas.audebert@onera.fr

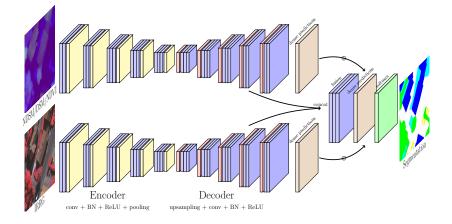
Residual correction

Inspired by signal processing and **residual learning** (He et al., 2015), we design a residual correction module for merging the two prediction streams.



DNERA ONERA

The new framework



DNERA ONERA

March 6, 2017

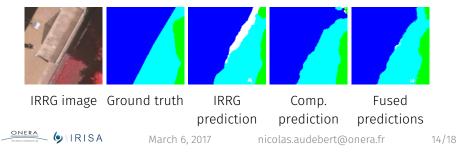
nicolas.audebert@onera.fr

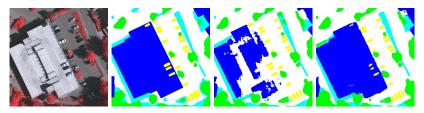
Table 1: ISPRS 2D Semantic Labelling Challenge Vaihingen results.

Method	imp surf	building	low veg	tree	car	Accuracy
RF + CRF ("HUST") CNN ensemble ("ONE_5") FCN ("DLR_2")	86.9% 87.8% 90.3%	92.0% 92.0% 92.3%	78.3% 77.8% 82.5%	86.9% 86.2% 89.5%	29.0% 50.7% 76.3%	85.9% 85.9% 88.5%
FCN + RF + CRF ("DST_2")	90.5%	93.7%	83.4%	89.2%	72.6%	89.1%
SegNet++ SegNet++ + fusion	91.5 % 91.0%	94.3% 94.5 %	82.7% 84.4 %	89.3% 89.9 %	85.7 % 77.8%	89.4% 89.8 %

Results

IRRG image Ground truth IRRG Comp. Fused prediction prediction predictions

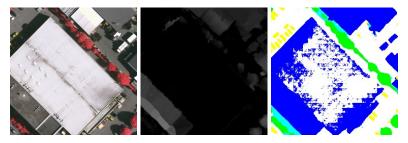




IRRG image Ground truth IRRG prediction Fused predictions

Building, road or cars ?! Late fusion mixes the prediction and recovers nearly everything.

...and failure



IRRG image

NDSM

Fusion

Missing building in the NDSM: the residual correction fails to prevent the misclassification.

Conclusion

Contribution

- Late fusion strategy for urban remote sensing data
- Deep learning based prediction fusion
- Error correction using residual learning

Code and weights for our version of SegNet

https://github.com/nshaud/DeepNetsForEO

Questions ?

Questions are welcomed, now or at

nicolas.audebert@onera.fr.

Acknowledgments

The authors thank the ONERA-Total research project NAOMI for the funding of this work.

Code and weights for our version of SegNet

https://github.com/nshaud/DeepNetsForEO

